scholarly journals Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys

2021 ◽  
Vol 200 ◽  
pp. 113927
Author(s):  
Rajeshwar R. Eleti ◽  
Nikita Stepanov ◽  
Nikita Yurchenko ◽  
Denis Klimenko ◽  
Sergey Zherebtsov
Author(s):  
F. J. Wang ◽  
Y. Zhang ◽  
G. L. Chen ◽  
H. A. Davies

High entropy alloys are usually defined as the kind of alloys with at least five principle components, each component has the equi-atomic ratio or near equi-atomic ratio, and the high entropy alloys can have very high entropy of mixing, forming simple solid solution rather than many complex intermediate phases. In this paper, the size effects on the microstructure and mechanical behaviors of a high entropy alloy of AlCoCrFeNi was studied by preparing as-cast rod samples with different diameters. The alloy independent of cast diameter samples has the same phase of body centered cubic solid solution. With decreasing casting diameter, both the strength and the plasticity are increased slightly.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Boris B. Straumal ◽  
Roman Kulagin ◽  
Brigitte Baretzky ◽  
Natalia Yu. Anisimova ◽  
Mikhail V. Kiselevskiy ◽  
...  

This review discusses an area of expertise that is at the intersection of three large parts of materials science. These are phase transformations, severe plastic deformation (SPD), and high-entropy alloys (HEA). First, SPD makes it possible to determine the borders of single-phase regions of existence of a multicomponent solid solution in HEAs. An important feature of SPD is that using these technologies, it is possible to obtain second-phase nanoparticles included in a matrix with a grain size of several tens of nanometers. Such materials have a very high specific density of internal boundaries. These boundaries serve as pathways for accelerated diffusion. As a result of the annealing of HEAs subjected to SPD, it is possible to accurately determine the border temperature of a single-phase solid solution area on the multicomponent phase diagram of the HEA. Secondly, SPD itself induces phase transformations in HEAs. Among these transformations is the decomposition of a single-phase solid solution with the formation of nanoparticles of the second phase, the formation of high-pressure phases, amorphization, as well as spinodal decomposition. Thirdly, during SPD, a large number of new grain boundaries (GBs) are formed due to the crystallites refinement. Segregation layers exist at these new GBs. The concentration of the components in GBs differs from that in the bulk solid solution. As a result of the formation of a large number of new GBs, atoms leave the bulk solution and form segregation layers. Thus, the composition of the solid solution in the volume also changes. All these processes make it possible to purposefully influence the composition, structure and useful properties of HEAs, especially for medical applications.


2018 ◽  
Vol 941 ◽  
pp. 1059-1064
Author(s):  
Hamed Shahmir ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

High-entropy alloys (HEAs) are currently attracting much interest because they offer unique properties and good ductility at low temperatures. These materials are of interest primarily because they contain five or more principal elements, with each element having a concentration between 5 and 35 at. %, and yet they have very simple structures based on solid solution phases. Superplasticity is defined formally as a tensile elongation without failure of at least 400% and very recent experiments have shown that the HEAs also have a potential for exhibiting superplastic ductilities when testing at elevated temperatures. Since superplasticity requires a very small grain size, typically <10 μm, it is feasible to process HEAs using severe plastic deformation in order to introduce significant grain refinement. The objective of this review is to summarize the recent results showing superplasticity in HEAs and to compare directly the superplastic flow in HEAs and superplasticity in conventional metallic alloys.


2021 ◽  
pp. 110877
Author(s):  
Ankit Roy ◽  
Praveen Sreeramagiri ◽  
Tomas Babuska ◽  
Brandon Krick ◽  
Pratik K. Ray ◽  
...  

2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Fritz Körmann ◽  
Tatiana Kostiuchenko ◽  
Alexander Shapeev ◽  
Jörg Neugebauer

2021 ◽  
Vol 197 ◽  
pp. 110623
Author(s):  
Ujjawal Kumar Jaiswal ◽  
Yegi Vamsi Krishna ◽  
M.R. Rahul ◽  
Gandham Phanikumar

2021 ◽  
Vol 199 ◽  
pp. 113886
Author(s):  
Xicong Ye ◽  
Jinyan Xiong ◽  
Xin Wu ◽  
Chang Liu ◽  
Dong Xu ◽  
...  

Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


Sign in / Sign up

Export Citation Format

Share Document