scholarly journals Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel

2022 ◽  
Vol 206 ◽  
pp. 114219
Author(s):  
J.P. Oliveira ◽  
Jiajia Shen ◽  
Z. Zeng ◽  
Jeong Min Park ◽  
Yeon Taek Choi ◽  
...  
2020 ◽  
Vol 32 (2) ◽  
pp. 022005
Author(s):  
Y. Fan ◽  
P. Li ◽  
K. Chen ◽  
L. Fu ◽  
A. Shan ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Joonas Lehtonen ◽  
Heli Koivuluoto ◽  
Yanling Ge ◽  
Aapo Juselius ◽  
Simo-Pekka Hannula

Cold gas spraying was used to make a coating from an equiatomic CrFeNiMn high-entropy alloy. This four-component alloy was chosen because it is Co-free, thus allowing application in nuclear industries as a possible replacement of currently used stainless steel coatings. The feedstock material was gas atomized powder with a particle size distribution from 20 to 45 µm. A number of parameters were tested, such as the powder feed rate and gas feed pressure, in order to obtain as dense a coating as possible with nitrogen as the process gas. Spraying was performed using a gas preheating temperature of 1000 °C, gas feed pressure ranging from 50 to 60 bar, and two powder feeding rates. The coating thicknesses ranging from 230 to 490 µm and porosities ranging from 3% to 10% were obtained depending on the powder feed rate and gas feed pressure. The hardness of the cross-section of the coating was usually lower than that of the surface. The highest coating hardness obtained was above 300 HV0.3 for both the surface and the cross-section. The as-atomized powder consisted of a face-centered cubic (FCC) phase with a minute amount of body-centered cubic (BCC) phase, which was no longer detectable in the coatings. The microstructure of the coating was highly stressed due to the high degree of deformation occurring in cold gas spraying. The deformation leads to strain hardening and induces a pronounced texture in the coating. The {111} planes tend to align along the coating surface, with deformation and texturing concentrating mainly on particle boundaries. A high-entropy alloy (HEA) coating was successfully sprayed for the first time using nitrogen as a process gas. The coating has the potential to replace stainless steel coatings in nuclear industry applications.


Sign in / Sign up

Export Citation Format

Share Document