scholarly journals Towards low-carbon district heating: Investigating the socio-technical challenges of the urban energy transition

Smart Energy ◽  
2021 ◽  
pp. 100054
Author(s):  
Francesco Reda ◽  
Salvatore Ruggiero ◽  
Karoliina Auvinen ◽  
Armi Temmes
2019 ◽  
Vol 9 (16) ◽  
pp. 3332 ◽  
Author(s):  
Henrique Lagoeiro ◽  
Akos Revesz ◽  
Gareth Davies ◽  
Graeme Maidment ◽  
Daniel Curry ◽  
...  

Cities demand vast amounts of energy for their everyday operation, resulting in significant degradation of energy in the form of heat in the urban environment. This leads to high cooling requirements in cities, while also presenting the opportunity to reuse such waste heat in order to provide low-carbon heating for buildings and processes. Among the many potential energy sources that could be exploited in urban areas, underground railway tunnels are particularly attractive, as the operation of the trains produce considerable amounts of heat throughout the year. This paper reviews how secondary energy sources in urban areas can be integrated into heating and cooling networks, with emphasis on underground rail tunnels. This involves investigating potential urban waste heat sources and the existing state-of-the-art technologies that could be applied to efficiently recover this secondary energy, as well as analyzing how district heating and cooling networks have been a key mechanism to allow for a smooth transition from current fossil fuel based to future low-carbon energy sources.


2014 ◽  
Vol 27 (3) ◽  
pp. 47-67 ◽  
Author(s):  
Janette Webb

UK energy policies position urban heat networks as components of a resilient low carbon, aff ordable system, but, as Stewart Russell’s work showed, such technologies have never been integrated into UK provision. This paper takes Russell’s legacy forward by examining prospects for urban district heating and combined heat and power development in the context of the fi nancial, rather than technological, innovations shaped by liberalised energy and fi nancial markets. Drawing on sociology of markets and social studies of fi nance, the paper examines the resulting evaluation practices. Findings indicate that such district energy infrastructure does not conform to the investment calculus, making a business case hard to establish. Bridging the value gap between liberalised fi nance and district energy requires actors willing to devise improvised solutions. In spite of the established sustainability credentials of the technology therefore, signifi cant deployment in the UK (and similar countries) will depend on political leadership and new fi scal policy.


2019 ◽  
Vol 9 (3) ◽  
pp. 307-320
Author(s):  
Andy van den Dobbelsteen ◽  
Siebe Broersma ◽  
Michiel Fremouw ◽  
Tess Blom ◽  
Jelle Sturkenboom ◽  
...  

Purpose City-zen is an EU-funded interdisciplinary project that aims to develop and demonstrate energy-efficient cities and to build methods and tools for cities, industries and citizens to achieve ambitious sustainability targets. As part of the project, an Urban Energy Transition Methodology is developed, elaborated and used to create Roadmaps, which indicate the interventions needed to get from the current situation to the desired sustainable future state of a city. For one of the partner cities, Amsterdam, such a Roadmap was developed. The paper aims to discuss these issues. Design/methodology/approach This paper discusses the approach and methodology behind the City-zen Urban Energy Transition Methodology, with its six steps from the initial energy analysis to the roadmap towards a desired future state. The paper will illustrate this by results from the Amsterdam Roadmap study, in numbers and figures. Findings The Roadmap study of Amsterdam revealed that the city can become energy neutral in its heat demand, but not in the production of sufficient electricity from renewables. Research limitations/implications Although as yet only applied to the City of Amsterdam, the methodology behind the roadmap can be applied by cities across the world. Practical implications An enormous effort is required in order to transform, renovate and adapt parts of the city. It was calculated, for instance, how many energy renovation projects, district heating pipes and photovoltaic panels will be annually needed in order to timely become carbon neutral, energy neutral and “fossil free”. Social implications The technical-spatial content of the Roadmap was presented to stakeholders of the Dutch capital city, such as politicians, energy companies, commercial enterprises, and not least citizens themselves. Although informed by scientific work, the Roadmap appealed too many, demonstrated by the extensive media coverage. Originality/value The City-zen Methodology builds upon earlier urban energy approaches such as REAP (Tillie et al., 2009), LES (Dobbelsteen et al., 2011) and Energy Potential Mapping (Broersma et al., 2013), but creates a stepped approach that has not been presented and applied to a city as a whole yet. As far as the authors know, so far, an energy transition roadmap has never been developed for an entire city.


Author(s):  
José Ángel Gimeno ◽  
Eva Llera Sastresa ◽  
Sabina Scarpellini

Currently, self-consumption and distributed energy facilities are considered as viable and sustainable solutions in the energy transition scenario within the European Union. In a low carbon society, the exploitation of renewables for self-consumption is closely tied to the energy market at the territorial level, in search of a compromise between competitiveness and the sustainable exploitation of resources. Investments in these facilities are highly sensitive to the existence of favourable conditions at the territorial level, and the energy policies adopted in the European Union have contributed positively to the distributed renewables development and the reduction of their costs in the last decade. However, the number of the installed facilities is uneven in the European Countries and those factors that are more determinant for the investments in self-consumption are still under investigation. In this scenario, this paper presents the main results obtained through the analysis of the determinants in self-consumption investments from a case study in Spain, where the penetration of this type of facilities is being less relevant than in other countries. As a novelty of this study, the main influential drivers and barriers in self-consumption are classified and analysed from the installers' perspective. On the basis of the information obtained from the installers involved in the installation of these facilities, incentives and barriers are analysed within the existing legal framework and the potential specific lines of the promotion for the effective deployment of self-consumption in an energy transition scenario.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3683
Author(s):  
Yerasimos Yerasimou ◽  
Marios Kynigos ◽  
Venizelos Efthymiou ◽  
George E. Georghiou

Distributed generation (DG) systems are growing in number, diversifying in driving technologies and providing substantial energy quantities in covering the energy needs of the interconnected system in an optimal way. This evolution of technologies is a response to the needs of the energy transition to a low carbon economy. A nanogrid is dependent on local resources through appropriate DG, confined within the boundaries of an energy domain not exceeding 100 kW of power. It can be a single building that is equipped with a local electricity generation to fulfil the building’s load consumption requirements, it is electrically interconnected with the external power system and it can optionally be equipped with a storage system. It is, however, mandatory that a nanogrid is equipped with a controller for optimisation of the production/consumption curves. This study presents design consideretions for nanogrids and the design of a nanogrid system consisting of a 40 kWp photovoltaic (PV) system and a 50 kWh battery energy storage system (BESS) managed via a central converter able to perform demand-side management (DSM). The implementation of the nanogrid aims at reducing the CO2 footprint of the confined domain and increase its self-sufficiency.


2021 ◽  
pp. 251484862110249
Author(s):  
Siddharth Sareen

Increasing recognition of the irrefutable urgency to address the global climate challenge is driving mitigation efforts to decarbonise. Countries are setting targets, technological innovation is making renewable energy sources competitive and fossil fuel actors are leveraging their incumbent privilege and political reach to modulate energy transitions. As techno-economic competitiveness is rapidly reconfigured in favour of sources such as solar energy, governance puzzles dominate the research frontier. Who makes key decisions about decarbonisation based on what metrics, and how are consequent benefits and burdens allocated? This article takes its point of departure in ambitious sustainability metrics for solar rollout that Portugal embraced in the late 2010s. This southwestern European country leads on hydro and wind power, and recently emerged from austerity politics after the 2008–2015 recession. Despite Europe’s best solar irradiation, its big solar push only kicked off in late 2018. In explaining how this arose and unfolded until mid-2020 and why, the article investigates what key issues ambitious rapid decarbonisation plans must address to enhance social equity. It combines attention to accountability and legitimacy to offer an analytical framework geared at generating actionable knowledge to advance an accountable energy transition. Drawing on empirical study of the contingencies that determine the implementation of sustainability metrics, the article traces how discrete acts legitimate specific trajectories of territorialisation by solar photovoltaics through discursive, bureaucratic, technocratic and financial practices. Combining empirics and perspectives from political ecology and energy geographies, it probes the politics of just energy transitions to more low-carbon and equitable societal futures.


Author(s):  
Muntasir Murshed ◽  
Zahoor Ahmed ◽  
Md Shabbir Alam ◽  
Haider Mahmood ◽  
Abdul Rehman ◽  
...  

Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 52
Author(s):  
Annette Steingrube ◽  
Keyu Bao ◽  
Stefan Wieland ◽  
Andrés Lalama ◽  
Pithon M. Kabiro ◽  
...  

District heating is seen as an important concept to decarbonize heating systems and meet climate mitigation goals. However, the decision related to where central heating is most viable is dependent on many different aspects, like heating densities or current heating structures. An urban energy simulation platform based on 3D building objects can improve the accuracy of energy demand calculation on building level, but lacks a system perspective. Energy system models help to find economically optimal solutions for entire energy systems, including the optimal amount of centrally supplied heat, but do not usually provide information on building level. Coupling both methods through a novel heating grid disaggregation algorithm, we propose a framework that does three things simultaneously: optimize energy systems that can comprise all demand sectors as well as sector coupling, assess the role of centralized heating in such optimized energy systems, and determine the layouts of supplying district heating grids with a spatial resolution on the street level. The algorithm is tested on two case studies; one, an urban city quarter, and the other, a rural town. In the urban city quarter, district heating is economically feasible in all scenarios. Using heat pumps in addition to CHPs increases the optimal amount of centrally supplied heat. In the rural quarter, central heat pumps guarantee the feasibility of district heating, while standalone CHPs are more expensive than decentral heating technologies.


Urban Studies ◽  
2021 ◽  
pp. 004209802110059
Author(s):  
Leslie Quitzow ◽  
Friederike Rohde

Current imaginaries of urban smart grid technologies are painting attractive pictures of the kinds of energy futures that are desirable and attainable in cities. Making claims about the future city, the socio-technical imaginaries related to smart grid developments unfold the power to guide urban energy policymaking and implementation practices. This paper analyses how urban smart grid futures are being imagined and co-produced in the city of Berlin, Germany. It explores these imaginaries to show how the politics of Berlin’s urban energy transition are being driven by techno-optimistic visions of the city’s digital modernisation and its ambitions to become a ‘smart city’. The analysis is based on a discourse analysis of relevant urban policy and other documents, as well as interviews with key stakeholders from Berlin’s energy, ICT and urban development sectors, including key experts from three urban laboratories for smart grid development and implementation in the city. It identifies three dominant imaginaries that depict urban smart grid technologies as (a) environmental solution, (b) economic imperative and (c) exciting experimental challenge. The paper concludes that dominant imaginaries of smart grid technologies in the city are grounded in a techno-optimistic approach to urban development that are foreclosing more subtle alternatives or perhaps more radical change towards low-carbon energy systems.


Sign in / Sign up

Export Citation Format

Share Document