scholarly journals Legitimating power: Solar energy rollout, sustainability metrics and transition politics

2021 ◽  
pp. 251484862110249
Author(s):  
Siddharth Sareen

Increasing recognition of the irrefutable urgency to address the global climate challenge is driving mitigation efforts to decarbonise. Countries are setting targets, technological innovation is making renewable energy sources competitive and fossil fuel actors are leveraging their incumbent privilege and political reach to modulate energy transitions. As techno-economic competitiveness is rapidly reconfigured in favour of sources such as solar energy, governance puzzles dominate the research frontier. Who makes key decisions about decarbonisation based on what metrics, and how are consequent benefits and burdens allocated? This article takes its point of departure in ambitious sustainability metrics for solar rollout that Portugal embraced in the late 2010s. This southwestern European country leads on hydro and wind power, and recently emerged from austerity politics after the 2008–2015 recession. Despite Europe’s best solar irradiation, its big solar push only kicked off in late 2018. In explaining how this arose and unfolded until mid-2020 and why, the article investigates what key issues ambitious rapid decarbonisation plans must address to enhance social equity. It combines attention to accountability and legitimacy to offer an analytical framework geared at generating actionable knowledge to advance an accountable energy transition. Drawing on empirical study of the contingencies that determine the implementation of sustainability metrics, the article traces how discrete acts legitimate specific trajectories of territorialisation by solar photovoltaics through discursive, bureaucratic, technocratic and financial practices. Combining empirics and perspectives from political ecology and energy geographies, it probes the politics of just energy transitions to more low-carbon and equitable societal futures.

2021 ◽  
pp. 251484862110469
Author(s):  
Heather Plumridge Bedi

The Indian government advocates for a major shift from national reliance on coal to more renewable energy sources. While these aspirations are laudable, a political ecology review reveals the uneven power relations associated with the introduction of renewable energy in the southern Indian state of Kerala. Drawing from fieldwork, research traces how Kerala government solar projects, including schemes to promote rooftop solar, prioritize middle- and upper-class consumers. Historically marginalized communities, including people living below the poverty level and Adivasis (indigenous peoples), are not a priority for the state agency implementing renewable energy and thus are not beneficiaries of cleaner energy. This disconnected approach builds from and exacerbates historical political and resource inequalities and enables the persistence of social and environmental injustices, even while moving towards a lower-carbon future. This model does not allow for all residents to actively engage in decision-making about energy processes and proves to be a missed opportunity to think holistically about development and energy in tandem. Energy democracy provides ideas to disturb this uneven power structure, with cooperatives being one possible way to implement this change. As the case of Kerala underscores, India may undergo an energy transition, but it will not be a just energy transition without significant changes.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3554 ◽  
Author(s):  
Gabriele Lobaccaro ◽  
Malgorzata Maria Lisowska ◽  
Erika Saretta ◽  
Pierluigi Bonomo ◽  
Francesco Frontini

Rapid and uncontrolled urbanization is continuously increasing buildings’ energy consumption and greenhouse gas emissions into the atmosphere. In this scenario, solar energy integrated into the built environment can play an important role in optimizing the use of renewable energy sources on urban surfaces. Preliminary solar analyses to map the solar accessibility and solar potential of building surfaces (roofs and façades) should become a common practice among urban planners, architects, and public authorities. This paper presents an approach to support urban actors to assess solar energy potential at the neighborhood scale and to address the use of solar energy by considering overshadowing effects and solar inter-building reflections in accordance with urban morphology and building characteristics. The approach starts with urban analysis and solar irradiation analysis to elaborate solar mapping of façades and roofs. Data processing allows assessment of the solar potential of the whole case study neighborhood of Sluppen in Trondheim (Norway) by localizing the most radiated parts of buildings’ surfaces. Reduction factors defined by a new method are used to estimate the final solar potential considering shadowing caused by the presence of buildings’ architectural elements (e.g., glazed surfaces, balconies, external staircases, projections) and self-shading. Finally, rough estimation of solar energy generation is assessed by providing preliminary recommendations for solar photovoltaic (PV) systems suited to local conditions. Results show that depending on urban morphology and buildings’ shapes, PV systems can cover more than 40% of the total buildings’ energy needs in Trondheim.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Vanesa Castán Broto ◽  
Daphne Mah ◽  
Fangzhu Zhang ◽  
Ping Huang ◽  
Kevin Lo ◽  
...  

Abstract This paper develops an integrated framework to study the socio-spatial and temporal dimensions of urban energy transitions to investigate the development and spread of solar energy technologies in urban China. A comparative analysis of three case studies of solar energy transitions in the cities of Foshan (in Guangdong), Rizhao (in Shandong), and Wuxi (in Jiangsu) demonstrates the framework’s applicability. The results map each city’s trajectory towards low carbon energy. Transitions result from dynamic interactions among central and local governments, solar manufacturers, solar installers, and residents. Alongside industrial strategies, locally-specific factors have a determining influence on the eventual outcomes.


2014 ◽  
Vol 554 ◽  
pp. 271-275 ◽  
Author(s):  
Islam Mazharul ◽  
Ruhul Amin Muhammad ◽  
Farid Nasir Ani

Saudi Arabia is endowed with abundant solar energy which is readily available from the sun. Solar energy is one of main renewable energy sources and it can be harnessed for an array of applications including heating, cooling and generation of electricity. Due to its hot climate and relatively high purchasing power capability of the general population, Saudi Arabia has a huge demand for air-conditioning (cooling) appliances. Currently these appliances are mainly powered by electricity generated by conventional sources using fossil fuels. Solar air-conditioning system is an emerging technology which relies on the sun for meeting the energy demand. One attractive feature of this system is that the high demand for space cooling by air-conditioning equipment coincides with the abundant availability of solar irradiation during the long summer months. Currently there are several types of solar air-conditioning systems, including the absorption, adsorption and desiccant systems. Each system has its merits and demerits. In this paper, the prospects of using absorption solar thermal air-conditioning systems for space cooling in Saudi Arabia are given.


2018 ◽  
Vol 17 (3) ◽  
pp. 41-48
Author(s):  
Ye-Obong Udoakah ◽  
Egwuchukwu Chukwu

Energy is pivotal to the human and capital development of any nation; hence, the ever growing quest to discover reliable and sustainable energy sources. Researches on renewable energy sources ranging from wind, tidal, hydro power and solar energy is on-going; all geared towards providing better electrical energy source. Solar energy, however, holds a very promising future as far as sustainable energy solution is concerned. It is silent, green, with zero negative impact to the globe and no pollution. Unlike the conventional energy sources from fossil fuel, it reduces greatly the impact of global warming and remains endless. The developed solar tracker has two automatic tracking axis for both the zenith daily and the azimuth annually as well as displaying in real-time solar irradiation and tilt angles on the mounted LCD. The self-controlled tracking is achieved by using a MEGA2560 microcontroller board, programmed to read analog values from an array of LDRs, convert them to digital values, compare them and drive the stepper motors in the desired direction until equal light is sensed by alternate LDRs. At this point, the panel is aligned perpendicular to the sun rays to capture the maximum possible energy. A working prototype is successfully designed and constructed. The testing revealed very precise tracking made possible by using micro-stepping modes of the stepper motors. This also gave a very high tracking accuracy of about ±0.0560.


2021 ◽  
Vol 5 (3) ◽  
pp. 398-411
Author(s):  
Dicky Andrea Sembiring ◽  
Ahmad Mansuri ◽  
Ferry Rahmat Astianta Bukit ◽  
Malinda Sari Sembiring

The need for energy use, especially electrical energy continues to increase from year to year. One of the sectors that consume the largest electrical energy is the household sector which consumes about 27% of the total energy consumption of all sectors. The main energy source in Indonesia at this time still comes from fossil energy, although the government has tried to develop various renewable energy sources for the future. Solar energy is one of the renewable energies that is quite potential for Indonesia considering the level of solar radiation in Indonesia is quite high throughout the year. The selection of subsidized housing as the object of research is due to the existence of clear regulations and the number which also continues to increase every year. Through the collection of physical data on the research location, such as analysis of shadows, roof structure, solar irradiation data, average electric power usage, the average solar energy requirement of the subsidized housing will be obtained. Furthermore, by calculating the economic value, it will be obtained how the description of the possibility of applying solar energy to subsidized housing will be obtained. If possible, the application of solar energy in subsidized housing can help government programs to use renewable energy and reduce the use of fossil energy


2021 ◽  
Author(s):  
Ankit Verma ◽  
John Connolly ◽  
Noel O'Connor

<p>The development of a sustainable and renewable energy system is a significant challenge for Ireland. In line with UN and EU policies, Ireland aims to transition to a competitive, low carbon, climate-resilient and environmentally sustainable economy by 2050 (Project Ireland 2040 National Planning Framework). Ireland is committed to an aggregate reduction in CO<sub>2</sub> emissions of at least 80% (compared to 1990 levels) by 2050 across the electricity generation, built environment and transport sectors. Renewable energy can help Ireland reduce GHG emissions and carbon footprint as energy demands grow. It also reduces dependencies on fossil fuels as well as increases energy supply security.</p><p>According to the Sustainable Energy Authority of Ireland’s “Energy in Ireland 2020” report, 36.5% of electricity demand was met by renewable energy sources in 2019. Wind energy contributes 32% while solar energy contributes to <1%. Significant investment has been made in Ireland’s wind sector; however, the solar energy sector is relatively new. Ireland has the second-lowest total installed and cumulated solar photovoltaic (PV) capacity in the EU with just 36 MW or 7.3 W per inhabitant. (EurObserv'ER 2019).</p><p>Solar prospecting is necessary to identify optimum locations where solar farms can be established. Commercial and industrial building rooftops in urban areas offer a suitable location for establishing rooftop solar farms due to good connectivity with the electricity grid and proximity to users. Here we present an urban solar prospecting study in Dublin, Ireland.</p><p>A very high-resolution geospatial dataset was acquired for 47 industrial areas covering 53.3 km<sup>2</sup>. The data comprises of very high-resolution aerial images (12.5 cm/pixel) and digital surface model (DSM) (25 cm/pixel).</p><p>The high-resolution DSMs were used to model solar irradiation on building rooftops in ArcGIS Pro using the area solar analyst tool. These models were optimised for Irish conditions using Met Éireann solar radiation data for Dublin. The maximum solar insolation received in Dublin is 1000-1050 kWh/m<sup>2</sup>. The results demonstrate that there is potentially a large amount of commercial and industrial rooftop surface area available for PV installation in Dublin. These rooftops can generate a significant amount of electricity and help to offset CO<sub>2</sub> emissions.</p><p> </p>


2021 ◽  
Vol 307 ◽  
pp. 05001
Author(s):  
Dinara Orlova ◽  
Sofya Smolyakova ◽  
Aleksy Kwilinski

Nowadays, the world is undergoing the fourth energy transition process. The global climate agenda, decarbonization tendencies and the necessity to reduce CO2 emissions in order to meet the Paris Climate Agreement criteria are the dominant motives of the sustainable energy development. This article is devoted to analysing the implementation of renewable energy sources in Russian energy sector. The prospect aims are to identify the strengths, to assess the prospects for energy transition, to reveal key issues related to emerging industry and present recommendations on how to address them. It was found out that the implementation of RES is of high potential, especially in certain Russian regions. The key problems that hinder the RES development include low awareness, weak development policy, specific weather conditions, the lack of cutting-edge technologies etc. In this regard, it was suggested to strengthen the regulation within the climate policy, increase investments in green projects and stocks, accelerate the technological development and take other measures to support the emerging industry, along with general awareness-raising in the renewable energy sector.


2021 ◽  
Vol 43 (1) ◽  
pp. 75-81
Author(s):  
T.A. Zheliezna

The aim of the work is to develop recommendations for Ukraine on setting long-term integrated climate and energy goals and identifying ways to achieve them. The preconditions, main goals and objectives of the European Green Deal, which was presented by the European Commission in December 2019, are analyzed. The European Green Deal is a comprehensive strategy for the transition to a sustainable economy, clean energy and climate neutrality, i.e., zero greenhouse gas emissions, in Europe by 2050. The adoption of this Deal was preceded by several stages of a coherent EU policy in the relevant sectors. Possibilities for renewable energy development within the framework of the European Green Deal are considered. It is determined that preference is given to the production of green electricity, mobilization of the potential of offshore renewable energy, production of biogas and biofuels from biomass of agricultural origin, sustainable use of low-carbon and renewable fuels, including biomass and hydrogen, in hard-to-electricity sectors. In Ukraine, the document that is closest by its contents to the European Green Deal is the draft Concept of green energy transition until 2050 presented in January 2020. The draft Concept states the goal of achieving 70% of renewable energy sources in electricity generation by 2050 and the climate-neutral economy of Ukraine by 2070. It is recommended that this document should be finalized and adopted formally as soon as possible.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pablo del Río ◽  
Luis Janeiro

Renewable energy sources (RES) play a critical role in the low-carbon energy transition. Although there is quite an abundant literature on the barriers to RES, the analysis of the electricity generation overcapacity as a barrier to further RES penetration has received scant attention. This paper tries to cover this gap. Its aim is to analyse the causes and consequences of overcapacity, with a special focus on the impact on RES deployment, using Spain as a case study. It also analyses the policies which may mitigate this problem in both the short and the longer terms.


Sign in / Sign up

Export Citation Format

Share Document