scholarly journals Stretch-induced actomyosin contraction in epithelial tubes: Mechanotransduction pathways for tubular homeostasis

2017 ◽  
Vol 71 ◽  
pp. 146-152 ◽  
Author(s):  
Kriti Sethi ◽  
Erin J. Cram ◽  
Ronen Zaidel-Bar
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Stejskalová ◽  
Victoria Fincke ◽  
Melissa Nowak ◽  
Yvonne Schmidt ◽  
Katrin Borrmann ◽  
...  

AbstractEndometriosis is a painful gynecological condition characterized by ectopic growth of endometrial cells. Little is known about its pathogenesis, which is partially due to a lack of suitable experimental models. Here, we use endometrial stromal (St-T1b), primary endometriotic stromal, epithelial endometriotic (12Z) and co-culture (1:1 St-T1b:12Z) spheroids to mimic the architecture of endometrium, and either collagen I or Matrigel to model ectopic locations. Stromal spheroids, but not single cells, assumed coordinated directional migration followed by matrix remodeling of collagen I on day 5 or 7, resembling ectopic lesions. While generally a higher area fold increase of spheroids occurred on collagen I compared to Matrigel, directional migration was not observed in co-culture or in 12Z cells. The fold increase in area on collagen I was significantly reduced by MMP inhibition in stromal but not 12Z cells. Inhibiting ROCK signalling responsible for actomyosin contraction increased the fold increase of area and metabolic activity compared to untreated controls on Matrigel. The number of protrusions emanating from 12Z spheroids on Matrigel was decreased by microRNA miR-200b and increased by miR-145. This study demonstrates that spheroid assay is a promising pre-clinical tool that can be used to evaluate small molecule drugs and microRNA-based therapeutics for endometriosis.


2020 ◽  
Vol 119 (5) ◽  
pp. 1025-1032
Author(s):  
Thomas Le Goff ◽  
Benno Liebchen ◽  
Davide Marenduzzo

2012 ◽  
Vol 197 (3) ◽  
pp. 347-349 ◽  
Author(s):  
Michael Sixt

Fibroblasts migrate on two-dimensional (2D) surfaces by forming lamellipodia—actin-rich extensions at the leading edge of the cell that have been well characterized. In this issue, Petrie et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201124) show that in some 3D environments, including tissue explants, fibroblasts project different structures, termed lobopodia, at the leading edge. Lobopodia still assemble focal adhesions; however, similar to membrane blebs, they are driven by actomyosin contraction and do not accumulate active Rac, Cdc42, and phosphatidylinositol 3-kinases.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3175
Author(s):  
Katsuhiko Itoh ◽  
Takahiro Ebata ◽  
Hiroaki Hirata ◽  
Takeru Torii ◽  
Wataru Sugimoto ◽  
...  

Tumor suppressor p53 plays an integral role in DNA-damage induced apoptosis, a biological process that protects against tumor progression. Cell shape dramatically changes when cells undergo apoptosis, which is associated with actomyosin contraction; however, it remains entirely elusive how p53 regulates actomyosin contraction in response to DNA-damaging agents. To identify a novel p53 regulating gene encoding the modulator of myosin, we conducted DNA microarray analysis. We found that, in response to DNA-damaging agent doxorubicin, expression of myotonic dystrophy protein kinase (DMPK), which is known to upregulate actomyosin contraction, was increased in a p53-dependent manner. The promoter region of DMPK gene contained potential p53-binding sequences and its promoter activity was increased by overexpression of the p53 family protein p73, but, unexpectedly, not of p53. Furthermore, we found that doxorubicin treatment induced p73 expression, which was significantly attenuated by downregulation of p53. These data suggest that p53 induces expression of DMPK through upregulating p73 expression. Overexpression of DMPK promotes contraction of the actomyosin cortex, which leads to formation of membrane blebs, loss of cell adhesion, and concomitant caspase activation. Taken together, our results suggest the existence of p53-p73-DMPK axis which mediates DNA-damage induced actomyosin contraction at the cortex and concomitant cell death.


2019 ◽  
Vol 218 (8) ◽  
pp. 2743-2761 ◽  
Author(s):  
Daniel Krueger ◽  
Theresa Quinkler ◽  
Simon Arnold Mortensen ◽  
Carsten Sachse ◽  
Stefano De Renzis

Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.


Development ◽  
2019 ◽  
Vol 146 (23) ◽  
pp. dev181206 ◽  
Author(s):  
Tsuyoshi Hirashima ◽  
Taiji Adachi

2011 ◽  
Vol 52 (3) ◽  
pp. 1474 ◽  
Author(s):  
Charanya Ramachandran ◽  
Rajkumar V. Patil ◽  
Najam A. Sharif ◽  
Sangly P. Srinivas

2011 ◽  
Vol 300 (5) ◽  
pp. L667-L678 ◽  
Author(s):  
Sarah L. Sayner

The presence of excess fluid in the interstitium and air spaces of the lung presents severe restrictions to gas exchange. The pulmonary endothelial barrier regulates the flux of fluid and plasma proteins from the vascular space into the underlying tissue. The integrity of this endothelial barrier is dynamically regulated by transitions in cAMP (3′,5′-cyclic adenosine monophosphate), which are synthesized in discrete subcellular compartments. Cyclic AMP generated in the subplasma membrane compartment acts through PKA and Epac (exchange protein directly activated by cAMP) to tighten cell adhesions, strengthen cortical actin, reduce actomyosin contraction, and decrease permeability. Confining cAMP within the subplasma membrane space is critical to its barrier-protective properties. When cAMP escapes the near membrane compartment and gains access to the cytosolic compartment, or when soluble adenylyl cyclases generate cAMP within the cytosolic compartment, this second messenger activates established cytosolic cAMP signaling cascades to perturb the endothelial barrier through PKA-mediated disruption of microtubules. Thus the concept of cAMP compartmentalization in endothelial barrier regulation is gaining momentum and new possibilities are being unveiled for cytosolic cAMP signaling with the emergence of the bicarbonate-regulated mammalian soluble adenylyl cyclase (sAC or AC10).


2008 ◽  
Vol 121 (21) ◽  
pp. 3501-3504 ◽  
Author(s):  
S. Chung ◽  
D. J. Andrew
Keyword(s):  

2014 ◽  
Vol 127 (16) ◽  
pp. 3440-3450 ◽  
Author(s):  
H. Machiyama ◽  
H. Hirata ◽  
X. K. Loh ◽  
M. M. Kanchi ◽  
H. Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document