Insights into the role of Bioinspiration, Photosynthetic organisms, and Biomass-derived Electrodes/Membranes in the development of Bioelectrochemical Systems

2021 ◽  
Vol 48 ◽  
pp. 101570
Author(s):  
Kiran Kumar V. ◽  
Man mohan K. ◽  
K. Gunaseelan ◽  
S. Gajalakshmi
2022 ◽  
Author(s):  
Xin Liu ◽  
Wojciech J Nawrocki ◽  
Roberta Croce

Non-photochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ was abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 was shown to be a pH sensor and switching to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet. In this work, we combine biochemical and physiological measurements to study short-term high light acclimation of npq5, the mutant lacking LHCBM1. We show that while in low light in the absence of this complex, the antenna size of PSII is smaller than in its presence, this effect is marginal in high light, implying that a reduction of the antenna is not responsible for the low NPQ. We also show that the mutant expresses LHCSR3 at the WT level in high light, indicating that the absence of this complex is also not the reason. Finally, NPQ remains low in the mutant even when the pH is artificially lowered to values that can switch LHCSR3 to the quenched conformation. It is concluded that both LHCSR3 and LHCBM1 need to be present for the induction of NPQ and that LHCBM1 is the interacting partner of LHCSR3. This interaction can either enhance the quenching capacity of LHCSR3 or connect this complex with the PSII supercomplex.


2018 ◽  
Vol 115 (30) ◽  
pp. E7174-E7183 ◽  
Author(s):  
David G. Welkie ◽  
Benjamin E. Rubin ◽  
Yong-Gang Chang ◽  
Spencer Diamond ◽  
Scott A. Rifkin ◽  
...  

The recurrent pattern of light and darkness generated by Earth’s axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium Synechococcus elongatus PCC 7942 is an excellent model system for dissecting these entwined mechanisms. Its core circadian oscillator, consisting of three proteins, KaiA, KaiB, and KaiC, transmits time-of-day signals to clock-output proteins, which reciprocally regulate global transcription. Research performed under constant light facilitates analysis of intrinsic cycles separately from direct environmental responses but does not provide insight into how these regulatory systems are integrated during light–dark cycles. Thus, we sought to identify genes that are specifically necessary in a day–night environment. We screened a dense bar-coded transposon library in both continuous light and daily cycling conditions and compared the fitness consequences of loss of each nonessential gene in the genome. Although the clock itself is not essential for viability in light–dark cycles, the most detrimental mutations revealed by the screen were those that disrupt KaiA. The screen broadened our understanding of light–dark survival in photosynthetic organisms, identified unforeseen clock–protein interaction dynamics, and reinforced the role of the clock as a negative regulator of a nighttime metabolic program that is essential for S. elongatus to survive in the dark.


Author(s):  
Muhammad Faisal Siddiqui ◽  
Zahid Ullah ◽  
Lakhveer Singh ◽  
Farhana Maqbool ◽  
Sadia Qayyum ◽  
...  

2019 ◽  
Vol 688 ◽  
pp. 56-64 ◽  
Author(s):  
Khurram Tahir ◽  
Waheed Miran ◽  
Mohsin Nawaz ◽  
Jiseon Jang ◽  
Asif Shahzad ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Nicolas Hedín ◽  
Julieta Barchiesi ◽  
Diego F. Gomez-Casati ◽  
María V. Busi

Background: The debranching starch enzymes, isoamylase 1 and 2 are well-conserved enzymes present in almost all the photosynthetic organisms. These enzymes are involved in the crystallization process of starch and are key components which remove misplaced α-1,6 ramifications on the final molecule. Aim: In this work, we performed a functional and structural study of a novel isoamylase from Ostreococcus tauri. Methods: We identified conserved amino acid residues possibly involved in catalysis. We also identified a region at the N-terminal end that resembles a Carbohydrate Binding Domain (CBM), which is more related to the family CBM48, but has no spatial conservation of the residues involved in carbohydrate binding. Results: The cloning, expression and biochemical characterization of this N-terminal region confirmed that it binds to polysaccharides, showing greater capacity for binding to amylopectin rather than total starch or amylose. Conclusion: This module could be a variant of the CBM48 family or it could be classified within a new CBM family.


MRS Advances ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 2309-2316
Author(s):  
Gabriella Buscemi ◽  
Francesco Milano ◽  
Danilo Vona ◽  
Gianluca M. Farinola ◽  
Massimo Trotta

The Reaction Centers (RCs) proteins are membrane proteins representing the key component so flight energy transduction in photosynthetic organisms. Upon photon absorption, these photoenzymes produce a long lasting intra protein hole electron couples whose charges are separated by 3 nanometers. The dipoles formed within the RCs can be effectively employed as transducing cores of several biological-organic hybrid devices whose design can accomplish photocurrents generation or act as phototransistor. To widen the application of the RCs to as many substrate as possible one valuable strategy is the bioconjugation of the protein with specific molecules ad-hoc selected to improve enzymatic performance and/or integration in proper scaffolding. In the present manuscript, we investigate the changes of the isoelectric point of the RC from the carotenoidless strain of the photosynthetic bacterium Rhodobacter sphaeroides R26 by inducing “in silico” mutations to predict on the role of the aminoacids involved in the bioconjugation.


2011 ◽  
Vol 102 (20) ◽  
pp. 9683-9690 ◽  
Author(s):  
Sunil A. Patil ◽  
Falk Harnisch ◽  
Christin Koch ◽  
Thomas Hübschmann ◽  
Ingo Fetzer ◽  
...  

2021 ◽  
Author(s):  
Dror Shitrit ◽  
Thomas Hackl ◽  
Raphael Laurenceau ◽  
Nicolas Raho ◽  
Michael C. G. Carlson ◽  
...  

AbstractMarine cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organisms on earth, spanning vast regions of the oceans and contributing significantly to global primary production. Their viruses (cyanophages) greatly influence cyanobacterial ecology and evolution. Although many cyanophage genomes have been sequenced, insight into the functional role of cyanophage genes is limited by the lack of a cyanophage genetic engineering system. Here, we describe a simple, generalizable method for genetic engineering of cyanophages from multiple families, that we named REEP for REcombination, Enrichment and PCR screening. This method enables direct investigation of key cyanophage genes, and its simplicity makes it adaptable to other ecologically relevant host-virus systems. T7-like cyanophages often carry integrase genes and attachment sites, yet exhibit lytic infection dynamics. Here, using REEP, we investigated their ability to integrate and maintain a lysogenic life cycle. We found that these cyanophages integrate into the host genome and that the integrase and attachment site are required for integration. However, stable lysogens did not form. The frequency of integration was found to be low in both lab cultures and the oceans. These findings suggest that T7-like cyanophage integration is transient and is not part of a classical lysogenic cycle.


Sign in / Sign up

Export Citation Format

Share Document