scholarly journals Environmentality in biomedicine: microbiome research and the perspectival body

2022 ◽  
Vol 91 ◽  
pp. 148-158
Author(s):  
Joana Formosinho ◽  
Adam Bencard ◽  
Louise Whiteley
Keyword(s):  
2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


2019 ◽  
Vol 42 ◽  
Author(s):  
Emily F. Wissel ◽  
Leigh K. Smith

Abstract The target article suggests inter-individual variability is a weakness of microbiota-gut-brain (MGB) research, but we discuss why it is actually a strength. We comment on how accounting for individual differences can help researchers systematically understand the observed variance in microbiota composition, interpret null findings, and potentially improve the efficacy of therapeutic treatments in future clinical microbiome research.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


2021 ◽  
Vol 9 (6) ◽  
pp. 1302
Author(s):  
Patrice D. Cani ◽  
Emilie Moens de Hase ◽  
Matthias Van Hul

The field of the gut microbiota is still a relatively young science area, yet many studies have already highlighted the translational potential of microbiome research in the context of human health and disease. However, like in many new fields, discoveries are occurring at a fast pace and have provided new hope for the development of novel clinical applications in many different medical conditions, not in the least in metabolic disorders. This rapid progress has left the field vulnerable to premature claims, misconceptions and criticism, both from within and outside the sector. Tackling these issues requires a broad collaborative effort within the research field and is only possible by acknowledging the difficulties and challenges that are faced and that are currently hindering clinical implementation. These issues include: the primarily descriptive nature of evidence, methodological concerns, disagreements in analysis techniques, lack of causality, and a rather limited molecular-based understanding of underlying mechanisms. In this review, we discuss various studies and models that helped identifying the microbiota as an attractive tool or target for developing various translational applications. We also discuss some of the limitations and try to clarify some common misconceptions that are still prevalent in the field.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Verónica Lloréns-Rico ◽  
Sara Vieira-Silva ◽  
Pedro J. Gonçalves ◽  
Gwen Falony ◽  
Jeroen Raes

AbstractWhile metagenomic sequencing has become the tool of preference to study host-associated microbial communities, downstream analyses and clinical interpretation of microbiome data remains challenging due to the sparsity and compositionality of sequence matrices. Here, we evaluate both computational and experimental approaches proposed to mitigate the impact of these outstanding issues. Generating fecal metagenomes drawn from simulated microbial communities, we benchmark the performance of thirteen commonly used analytical approaches in terms of diversity estimation, identification of taxon-taxon associations, and assessment of taxon-metadata correlations under the challenge of varying microbial ecosystem loads. We find quantitative approaches including experimental procedures to incorporate microbial load variation in downstream analyses to perform significantly better than computational strategies designed to mitigate data compositionality and sparsity, not only improving the identification of true positive associations, but also reducing false positive detection. When analyzing simulated scenarios of low microbial load dysbiosis as observed in inflammatory pathologies, quantitative methods correcting for sampling depth show higher precision compared to uncorrected scaling. Overall, our findings advocate for a wider adoption of experimental quantitative approaches in microbiome research, yet also suggest preferred transformations for specific cases where determination of microbial load of samples is not feasible.


Author(s):  
Alejandra Wu-Chuang ◽  
Adnan Hodžić ◽  
Lourdes Mateos-Hernández ◽  
Agustín Estrada-Peña ◽  
Dasiel Obregon ◽  
...  

2020 ◽  
Vol 86 (22) ◽  
Author(s):  
Manuel G. García ◽  
María D. Pérez-Cárceles ◽  
Eduardo Osuna ◽  
Isabel Legaz

ABSTRACT Numerous studies relate differences in microbial communities to human health and disease; however, little is known about microbial changes that occur postmortem or the possible applications of microbiome analysis in the field of forensic science. The aim of this review was to study the microbiome and its applications in forensic sciences and to determine the main lines of investigation that are emerging, as well as its possible contributions to the forensic field. A systematic review of the human microbiome in relation to forensic science was carried out by following PRISMA guidelines. This study sheds light on the role of microbiome research in the postmortem interval during the process of decomposition, identifying death caused by drowning or sudden death, locating the geographical location of death, establishing a connection between the human microbiome and personal items, sexual contact, and the identification of individuals. Actinomycetaceae, Bacteroidaceae, Alcaligenaceae, and Bacilli play an important role in determining the postmortem interval. Aeromonas can be used to determine the cause of death, and Corynebacterium or Helicobacter pylori can be used to ascertain personal identity or geographical location. Several studies point to a promising future for microbiome analysis in the different fields of forensic science, opening up an important new area of research.


2017 ◽  
Vol 22 (2) ◽  
pp. 142-155 ◽  
Author(s):  
Julia A. Vorholt ◽  
Christine Vogel ◽  
Charlotte I. Carlström ◽  
Daniel B. Müller

Sign in / Sign up

Export Citation Format

Share Document