scholarly journals Mathematical modeling and experimental analysis of the efficacy of photodynamic therapy in conjunction with photo thermal therapy and PEG-coated Au-doped TiO2 nanostructures to target MCF-7 cancerous cells

Author(s):  
Seemab Iqbal ◽  
M. Fakhar-e-Alam ◽  
K.S. Alimgeer ◽  
M. Atif ◽  
Atif Hanif ◽  
...  
Author(s):  
Erem Ahmetali ◽  
Pinar Sen ◽  
N. Ceren Süer ◽  
Tebello Nyokong ◽  
Tarik Eren ◽  
...  

2004 ◽  
Vol 7 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Noé Cheung ◽  
Maria Aparecida Pinto ◽  
Maria Clara Filippini Ierardi ◽  
Amauri Garcia

2018 ◽  
Vol 1 (4) ◽  
pp. e00063 ◽  
Author(s):  
V.N. Prozorovskiy ◽  
L.V. Kostryukova ◽  
E.I. Korotkevich ◽  
T.I. Torkhovskaya ◽  
G.E. Morozevich ◽  
...  

The possibility of increased internalization of the photosensitizer chlorin e6 in tumor cells was investigatedusing soy phosphatidylcholine nanoparticles 20-30 nm with or without attached peptide containing Asn-Gly-Arg (NGR) motif was studied. This amino acid sequence exhibits affinity to aminopeptidase N (CD13), wich is overexpressed in a number of tumor cells and vessels. Nanoparticles with chlorin e6 were prepared with added of distearoylphosphatidylcholine (DSPE) conjugated through PEG with a hexapeptide containing the NGR sequence, and then were incubated with tumor cells НерG2 and MCF-7. Chlorin e6 accumulation in СD13-negative cells (MCF-7) did not depend on the presence of peptide NGR in nanoparticles. However, for НерG2 cells a twofold increase of chlorine e6 internalization was observed as compared with the same particles without NGR. Differences in the response of these two cell lines, differed in expression of aminopeptidase N (APN), suggest the possibility of this protein using for targeted delivery. The prospectivity of usage of phospholipids nanoparticles conjugated with targeting peptide for photodynamic therapy is discussed, taking into account possible variation of APN expression, inherent for many solid tumors.


2010 ◽  
Vol 152-153 ◽  
pp. 136-143
Author(s):  
Yu Ying Xiong ◽  
Cui Fen Liang ◽  
Hua Xiao ◽  
Jian Wen Xiong

Fe-doped TiO2 was prepared by a homogenous precipitation method and characterized by XRD, UV-Vis DRS. The structure and the optical properties of nano-TiO2 with different Fe doping content were studied, as well as the effect and the possible mechanics of different intensity of TiO2 particles, Fe-doped nano-TiO2 particles on the activity of HL60 leukemic cells. The influence on the activity of cells exposures in light compared with un-exposure also be analysed. As the photo sensitizers, TiO2 and Fe-doped TiO2 particles eliminated tumor cell using photodynamic therapy(PDT)under magnetic field.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
M. Atif ◽  
Seemab Iqbal ◽  
M. Fakhar-E-Alam ◽  
M. Ismail ◽  
Qaisar Mansoor ◽  
...  

In this experimental approach, we explored the structures, morphologies, phototoxicities, and antibacterial activities of undoped and Mn-doped ceria nanocomposite materials, MnxCe1−xO2. The MnxCe1−xO2 nanocomposites were synthesized by employing a soft chemical route. Our prime focus was on the influence of different factors, both physical and chemical, i.e., the concentration of manganese in the product, size of the nanocomposite, drug dose, and incubation time, on the bacterial strains. Different bacterial strains were selected as experimental biological models of the antibacterial activity of the manganese-doped cerium oxide nanocomposite. In addition to the photodynamic response, the adenocarcinoma cell line (MCF-7) was also studied. Based on cell viability losses and bacterial inhibition analyses, the precise mechanisms of apoptosis or necrosis of 5-ALA/PpIX-exposed MCF-7 cells under 630 nm red lights and under dark conditions were elucidated. It was observed that the undoped nanocomposites had lower cytotoxicities and inhibitions compared with those of the doped nanocomposites towards pathogens. The antibacterial activity and effectiveness for photodynamic therapy were enhanced in the presence of the manganese-doped ceria nanocomposite, which could be attributed to the correlation of the maximum reactive oxygen species generation for targeted toxicity and maximum antioxidant property in bacteria growth inhibition. The optimized cell viability dose and doping concentration will be beneficial for treating cancer and bacterial infections in the future.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1462
Author(s):  
Ahmed Al-Kattan ◽  
Lamiaa M. A. Ali ◽  
Morgane Daurat ◽  
Elodie Mattana ◽  
Magali Gary-Bobo

Driven by their distinctive physiological activities, biological properties and unique theranostic modalities, silicon nanoparticles (SiNPs) are one of the promising materials for the development of novel multifunctional nanoplatforms for biomedical applications. In this work, we assessed the possibility to use laser-synthesized Si NPs as photosensitizers in two-photon excited photodynamic therapy (TPE-PDT) modality. Herein, we used an easy strategy to synthesize ultraclean and monodispersed SiNPs using laser ablation and fragmentation sequences of silicon wafer in aqueous solution, which prevent any specific purification step. Structural analysis revealed the spherical shape of the nanoparticles with a narrow size distribution centered at the mean size diameter of 62 nm ± 0.42 nm, while the negative surface charge of −40 ± 0.3 mV ensured a great stability without sedimentation over a long period of time. In vitro studies on human cancer cell lines (breast and liver) and healthy cells revealed their low cytotoxicity without any light stimulus and their therapeutic potential under TPE-PDT mode at 900 nm with a promising cell death of 45% in case of MCF-7 breast cancer cells, as a consequence of intracellular reactive oxygen species release. Their luminescence emission inside the cells was clearly observed at UV-Vis region. Compared to Si nanoparticles synthesized via chemical routes, which are often linked to additional modules with photochemical and photobiological properties to boost photodynamic effect, laser-synthesized SiNPs exhibit promising intrinsic therapeutic and imaging properties to develop advanced strategy in nanomedicine field.


Sign in / Sign up

Export Citation Format

Share Document