hardened zone
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Alloy Digest ◽  
2021 ◽  
Vol 70 (6) ◽  

Abstract Uddeholm UHB 11 is a medium-carbon, non-alloy cold-work tool steel. It is primarily used in the non-heat-treated condition. For special applications it is used in the quenched and tempered condition. Owing to its low hardenability, Uddeholm UHB 11 develops a fully hardened zone that is relatively thin, even when quenched drastically. Thicker sections have a hard case over a tough core. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, and joining. Filing Code: TS-814. Producer or source: Uddeholms AB.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2088
Author(s):  
Alicja Łukaszczyk ◽  
Sławomir Zimowski ◽  
Wojciech Pawlak ◽  
Beata Dubiel ◽  
Tomasz Moskalewicz

In the present work, an oxygen hardening of near-β phase Ti–13Nb–13Zr alloy in plasma glow discharge at 700–1000 °C was studied. The influence of the surface treatment on the alloy microstructure, tribological and micromechanical properties, and corrosion resistance is presented. A strong influence of the treatment on the hardened zone thickness, refinement of the α’ laths and grain size of the bulk alloy were found. The outer hardened zone contained mainly an oxygen-rich Ti α’ (O) solid solution. The microhardness and elastic modulus of the hardened zone decreased with increasing hardening temperature. The hardened zone thickness, size of the α’ laths, and grain size of the bulk alloy increased with increasing treatment temperature. The wear resistance of the alloy oxygen-hardened at 1000 °C was about two hundred times, and at 700 °C, even five hundred times greater than that of the base alloy. Oxygen hardening also slightly improved the corrosion resistance. Tribocorrosion tests revealed that the alloy hardened at 700 °C was wear-resistant in a corrosive environment, and when the friction process was completed, the passive film was quickly restored. The results show that glow discharge plasma oxidation is a simple and effective method to enhance the micromechanical and tribological performance of the Ti–13Nb–13Zr alloy.


Alloy Digest ◽  
2021 ◽  
Vol 70 (1) ◽  

Abstract Deutsche Edelstahlwerke Cryodur 1730 is a medium-carbon, non-alloy cold-work tool steel. It is primarily used in the non-heattreated condition. For special applications it is used in the quenched and tempered condition. Owing to its low hardenability Cryodur 1730 develops a fully hardened zone that is relatively thin, even when quenched drastically. Thicker sections have a hard case over a tough core. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on wear resistance as well as heat treating, machining, and joining. Filing Code: TS-808. Producer or source: Deutsche Edelstahlwerke Specialty Steel.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3078
Author(s):  
Pavel Filippov ◽  
Michael Kaufeld ◽  
Martin Ebner ◽  
Ursula Koch

Micro-milling is a promising technology for micro-manufacturing of high-tech components. A deep understanding of the micro-milling process is necessary since a simple downscaling from conventional milling is impossible. In this study, the effect of the mill geometry and feed per tooth on roughness and indentation hardness of micro-machined AA6082 surfaces is analyzed. A solid carbide (SC) single-tooth end-mill (cutting edge radius 670 nm) is compared to a monocrystalline diamond (MD) end-mill (cutting edge radius 17 nm). Feed per tooth was varied by 3 μm, 8 μm and 14 μm. The machined surface roughness was analyzed microscopically, while surface strain-hardening was determined using an indentation procedure with multiple partial unload cycles. No significant feed per tooth influence on surface roughness or mechanical properties was observed within the chosen range. Tools’ cutting edge roughness is demonstrated to be the main factor influencing the surface roughness. The SC-tool machined surfaces had an average Rq = 119 nm, while the MD-tool machined surfaces reached Rq = 26 nm. Surface strain-hardening is influenced mainly by the cutting edge radius (size-effect). For surfaces produced with the SC-tool, depth of the strain-hardened zone is higher than 200 nm and the hardness increases up to 160% compared to bulk. MD-tool produced a thinner strain-hardened zone of max. 60 nm while the hardness increased up to 125% at the surface. These findings are especially important for the high-precision manufacturing of measurement technology modules for the terahertz range.


Alloy Digest ◽  
2020 ◽  
Vol 69 (1) ◽  

Abstract Lucefin Group C45U is a medium-carbon, non-alloy cold-work tool steel. It is primarily used in the non-heat-treated condition. For special applications it is used in the quenched and tempered condition. Owing to its low hardenability, C45U develops a fully hardened zone that is relatively thin, even when quenched drastically. Thicker sections have a hard case over a tough core. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming and joining. Filing Code: TS-784. Producer or source: Lucefin S.p.A.


2018 ◽  
Vol 12 (5) ◽  
pp. 714-722 ◽  
Author(s):  
Pusit Mitsomwang ◽  
Rattana Borrisutthekul ◽  
Usanee Kitkamthorn ◽  
Shigeru Nagasawa ◽  
◽  
...  

This research was carried out to investigate the strain hardening in an aluminum alloy worksheet caused by punch/die shearing by means of microhardness measurement and finite element method (FEM) analysis. To examine the strain-hardened zone at the sheared edge of a worksheet, a 0.36 mm thick AA4047 aluminum alloy cut by punch/die shearing was subjected to microhardness measurements. In addition, a two-dimensional FEM model was developed and used to simulate the shear cutting of the aluminum alloy worksheet. The fundamental shear cutting parameters, punch/die clearance, cutting tool wear, and friction at the worksheet/tool interfaces were numerically varied and simulated. From the investigation results, the strain-hardened zone was observed by hardness measurement. The size of the zone significantly varied under different cutting parameters. From the simulated stresses at the sheared zone, the variation of the width of the strain-hardened zone with respect to cutting parameters was determined by the maximum principal stress on the worksheet being sheared.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Shitan Gu ◽  
Bangyou Jiang ◽  
Yue Pan ◽  
Zheng Liu

The mechanical properties of a coal seam affect the distribution of support pressure. Considering the strain hardening effect of coal seam, the support pressure relationship of three zones—softened, hardened, and elastic—of a coal seam with regard to a hard roof is proposed, and methods to determine an approximate expression for the support pressure of hardened zone of coal seam, the range of hardened zone, and the corresponding peak values of support pressure are provided. The deflection equations of a hard roof under three different support pressure relationships of coal seam before the first breaking were theoretically derived, and all the relevant integration constants were determined. Numerical examples of two cases are provided for calculating the bending moment of a hard roof and the support pressure of a coal seam. The analysis shows that as the working face advances, the maximum support pressure increases, the residual strength of coal seam at coal wall decreases, the overall deflection of roof gradually increases, the maximum bending moment of roof in the front of coal wall increases, and the advanced distance of roof bending moment peak gradually increases. As the depth of softened zone of coal seam increases, the similar conclusion is obtained, and the advanced distance of the roof bending moment peak increases at a relatively fast speed. Because the bending moment peak of hard roof is located near the support pressure peak in the softened zone of coal seam, the depth of softened zone of coal seam significantly affects the advanced distance of the bending moment peak of a roof. The actual advanced fracture distances of hard roof are distributed in a relatively broad range. The results indicate that there is a “large and long” type advanced fracture distance occurring in the actual stope. With the same overlying load and stope parameter conditions, the maximum support pressures of support roof in softened, hardened, and elastic zones considering a hardened coal seam are smaller than those in softened and elastic zones without hardening. However, the plumpness in front of the peak of the former support pressure curve is superior to that of the latter, and both the bending moment peak value and the advanced distance of bending moment peak of the former are higher than those of the latter.


2017 ◽  
Vol 62 (3) ◽  
pp. 1721-1726 ◽  
Author(s):  
M. Šebek ◽  
L. Falat ◽  
F. Kováč ◽  
I. Petryshynets ◽  
P. Horňak ◽  
...  

AbstractThe present study deals with the effects of laser surface treatment on microstructure evolution and wear resistance of AISI H11 hot work tool steel in quenched and tempered condition. The most upper laser-affected zone is characterized by re-melted microstructure consisting of dendrite cells with fresh non-tempered martensite, retained austenite and inter-dendritic carbidic network. The subsolidus microstructure just beneath the re-melted zone represents the most laser surface hardened zone consisting of fresh non-tempered martensite with fine and coarse carbides as a result of overheating the original QT substrate microstructure. The highest microhardness values in the range from 775 to 857 HV were measured for the LSH microstructure and the most softened microstructure exhibited the minimum hardness of 530 HV. The laser treated samples showed the improvement of their surface wear resistance by 35%.


2016 ◽  
Vol 878 ◽  
pp. 22-27
Author(s):  
Gui Cheng Wang ◽  
Bin Jiao ◽  
Jun Feng Zou ◽  
Hong Jie Pei

The grind-hardening test of 42CrMo steel was carried out on a forming grinding machine. The macrostructure, microstructures, micro-hardness and the depth of the hardened layer were measured and analyzed by optical micro-scope, scanning electron microscope and digital micro-hardness tester. The influences of original microstructure on the grind-hardened layer of 42CrMo steel were studied. The results show that the acicular martensite and a small amount of undissolved carbide appear in the surface layer, and slightly coarse martensite and a small amount of undissolved carbide appear in the middle layer of the completely hardened zone. Microstructure of the transitional zone varies with original structure. The microstructures and micro-hardness of the completely hardened zone have no obvious change under different original organizations, and the micro-hardness is 620HV0.5-700HV0.5. However, the distance from the slightly coarse martensite and the depth of the hardened layer increase with the uniformity improvement of the original microstructure.


2016 ◽  
Vol 34 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kwang-Hyeon Lee ◽  
Seong-Won Choi ◽  
Tae-Jin Yoon ◽  
Chung-Yun Kang

Sign in / Sign up

Export Citation Format

Share Document