Studies of n-SiCN/p-Si diode for low cost and high temperature ultraviolet light sensing applications

2016 ◽  
Vol 244 ◽  
pp. 121-125 ◽  
Author(s):  
Tse-Heng Chou
2011 ◽  
Vol 11 (12) ◽  
pp. 3446-3450 ◽  
Author(s):  
Feng-Renn Juang ◽  
Yean-Kuen Fang ◽  
Yen-Ting Chiang ◽  
Tzu-Chieh Wei ◽  
Bor-Wen Lin

2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 108
Author(s):  
Giancarla Alberti ◽  
Camilla Zanoni ◽  
Vittorio Losi ◽  
Lisa Rita Magnaghi ◽  
Raffaela Biesuz

This review illustrates various types of polymer and nanocomposite polymeric based sensors used in a wide variety of devices. Moreover, it provides an overview of the trends and challenges in sensor research. As fundamental components of new devices, polymers play an important role in sensing applications. Indeed, polymers offer many advantages for sensor technologies: their manufacturing methods are pretty simple, they are relatively low-cost materials, and they can be functionalized and placed on different substrates. Polymers can participate in sensing mechanisms or act as supports for the sensing units. Another good quality of polymer-based materials is that their chemical structure can be modified to enhance their reactivity, biocompatibility, resistance to degradation, and flexibility.


2015 ◽  
Vol 5 (3) ◽  
pp. P142-P147 ◽  
Author(s):  
Rawnaq A. Talib ◽  
M. J. Abdullah ◽  
Sabah M. Mohammad ◽  
Naser M. Ahmed ◽  
Nageh K. Allam

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Miradatul Najwa Muhd Rodhi ◽  
Mohibah Musa ◽  
Ku Halim Ku Hamid

Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO), as plasticizers, on the thermal behavior ofTacca leontopetaloidesstarch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3) had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745001 ◽  
Author(s):  
Qiudong Guo ◽  
Peng Zhang ◽  
Lin Bo ◽  
Guibin Zeng ◽  
Dengqian Li ◽  
...  

With the rapid development of manufacturing technology of high temperature superconductive YB[Formula: see text]Cu3O[Formula: see text] YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.


Sign in / Sign up

Export Citation Format

Share Document