Label-free and real time monitoring of adipocyte differentiation by surface infrared spectroscopy

2013 ◽  
Vol 176 ◽  
pp. 1176-1182 ◽  
Author(s):  
Yuki Aonuma ◽  
Yasuhiko Kondo ◽  
Ayumi Hirano-Iwata ◽  
Atena Nishikawa ◽  
Yasuo Shinohara ◽  
...  
2017 ◽  
Vol 985 ◽  
pp. 41-53 ◽  
Author(s):  
Rodrigo R. de Oliveira ◽  
Ricardo H.P. Pedroza ◽  
A.O. Sousa ◽  
Kássio M.G. Lima ◽  
Anna de Juan

2018 ◽  
Vol 351 ◽  
pp. 80-89 ◽  
Author(s):  
Eniko Farkas ◽  
Andras Szekacs ◽  
Boglarka Kovacs ◽  
Marianna Olah ◽  
Robert Horvath ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 478 ◽  
Author(s):  
Laura Pol ◽  
Chris Eckstein ◽  
Laura Acosta ◽  
Elisabet Xifré-Pérez ◽  
Josep Ferré-Borrull ◽  
...  

The chemical modification, or functionalization, of the surfaces of nanomaterials is a key step to achieve biosensors with the best sensitivity and selectivity. The surface modification of biosensors usually comprises several modification steps that have to be optimized. Real-time monitoring of all the reactions taking place during such modification steps can be a highly helpful tool for optimization. In this work, we propose nanoporous anodic alumina (NAA) functionalized with the streptavidin-biotin complex as a platform towards label-free biosensors. Using reflective interferometric spectroscopy (RIfS), the streptavidin-biotin complex formation, using biotinylated thrombin as a molecule model, was monitored in real-time. The study compared the performance of different NAA pore sizes in order to achieve the highest response. Furthermore, the optimal streptavidin concentration that enabled the efficient detection of the biotinylated thrombin attachment was estimated. Finally, the ability of the NAA-RIfS system to quantify the concentration of biotinylated thrombin was evaluated. This study provides an optimized characterization method to monitor the chemical reactions that take place during the biotinylated molecules attachment within the NAA pores.


2013 ◽  
Vol 27 (10) ◽  
pp. 5957-5961 ◽  
Author(s):  
Feng Zhang ◽  
Daisuke Adachi ◽  
Sriappareddy Tamalampudi ◽  
Akihiko Kondo ◽  
Keisuke Tominaga

2019 ◽  
Vol 244 ◽  
pp. 6-11 ◽  
Author(s):  
Aykut Arif Topçu ◽  
Erdoğan Özgür ◽  
Fatma Yılmaz ◽  
Nilay Bereli ◽  
Adil Denizli

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1118
Author(s):  
Yao Zhang ◽  
Ning Yang ◽  
Liangliang Xie ◽  
Fangyu Shu ◽  
Qian Shi ◽  
...  

In vitro models of the liver have a good simulation of the micro-liquid environment inside the human liver and the communication between cell tissues, which provides an important research tool for drug research and liver disease treatment. In this paper, we designed a 3D liver chip and real-time monitoring system based on microfluidic technology. The in vitro model of the liver on the chip was established by the three-dimensional microfluidic chip pipeline and the corresponding microwell array. Meanwhile, the culture medium is continuously injected on the chip, and the electrochemical impedance spectroscopy and near-infrared spectroscopy of the liver chip are recorded and analyzed from day one to day five. When the 3D cultured liver chip in vitro model reached a certain period and stabilized, paracetamol with varying gradients of concentration was applied to the cultured cells for drug resistance testing. The experimental results show that the liver chip and its monitoring system designed in this paper can maintain 100% cell viability of hepatocytes in vitro for a long time. Furthermore, it can meet the requirements of measurement technologies such as electrical impedance measurement and near-infrared spectroscopy in real-time, providing a stable culture platform for the further study of organ chips.


Sign in / Sign up

Export Citation Format

Share Document