scholarly journals Microfluidic flow-free generation of chemical concentration gradients

2014 ◽  
Vol 190 ◽  
pp. 334-341 ◽  
Author(s):  
Yao Zhou ◽  
Qiao Lin
2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Qingjun Kong ◽  
Richard A. Able ◽  
Veronica Dudu ◽  
Maribel Vazquez

Microfabrication has become widely utilized to generate controlled microenvironments that establish chemical concentration gradients for a variety of engineering and life science applications. To establish microfluidic flow, the majority of existing devices rely upon additional facilities, equipment, and excessive reagent supplies, which together limit device portability as well as constrain device usage to individuals trained in technological disciplines. The current work presents our laboratory-developed bridged μLane system, which is a stand-alone device that runs via conventional pipette loading and can operate for several days without need of external machinery or additional reagent volumes. The bridged μLane is a two-layer polydimethylsiloxane microfluidic device that is able to establish controlled chemical concentration gradients over time by relying solely upon differences in reagent densities. Fluorescently labeled Dextran was used to validate the design and operation of the bridged μLane by evaluating experimentally measured transport properties within the microsystem in conjunction with numerical simulations and established mathematical transport models. Results demonstrate how the bridged μLane system was used to generate spatial concentration gradients that resulted in an experimentally measured Dextran diffusivity of (0.82±0.01)×10−6 cm2/s.


1963 ◽  
Vol 46 (6) ◽  
pp. 1303-1315 ◽  
Author(s):  
Margaret Wickson-ginzburg ◽  
A. K. Solomon

Methods have been developed to study cellular Na, K, and Cl concentrations in HeLa cells. Cell [Na] and [K] are functions of the age of the culture. As the culture grows [K], expressed in mmols/liter cell H2O, rises from an initial value of 121 to a peak of 206 at about 4 days, and thereafter falls until it has almost returned to the initial value by the 9th day. [Na] falls as [K] rises, but there is no fixed relationship between the cellular concentrations of the two cations. There is, however, a correlation between generation time and cellular [K]. Measurements of net K uptake and net Na extrusion were carried out during 1 hour incubation at 37°C of low K cells. Both net K uptake and net Na extrusion took place against chemical concentration gradients, so that at least one transport system must be active; if the Cl distribution is passive both net K uptake and net Na extrusion are active. Studies with inhibitors of respiration and glycolysis lead to the conclusion that respiration is not required for these net transports, which appear to derive their energy from glycolytic sources.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Ahmed A. Alkhafaji ◽  
Osama M. Selim ◽  
Ryoichi S. Amano ◽  
J. R. Strickler ◽  
P. Hinow ◽  
...  

Abstract By adopting different methods to the inlet of a zooplankton olfactometer, the current study investigates the effect of the energy of chemical flow on the Gnathiid isopod crustaceans predicted behavior. These are mobile external parasites of fishes that have a significant impact on the health of their hosts. They rely at least in part on olfactory cues to find the host fish. To better understand host-finding dynamics in these parasites, a study was conducted with the simulations as a blueprint for developing a 3-dimensional test apparatus similar to what has been used for studying olfactory orientation in insects. The simulated olfactometer has four legs, each leg forming an inlet where fluids are introduced into the flow domain. There is one outlet at the center of the device. A mixture of water and chemicals is presented by applying a multi-component system. The shear and chemical concentration distribution were conducted to see how fluid physics plays a role in creating a chemical landscape. Computational results show distinct regions separated by high chemical concentration gradients when introducing chemicals from one leg. Changing the fluid inflow from one common inlet to three inlets shows that the chemical distribution exhibits steeper gradients than the typical inlet case, depicting that the gradual chemical concentrations can drive the animal toward the target faster. The best behavior that gives higher chemical gradients is obtained through the study when using three sub-inlets and Schmidt number between 3 and 10.


Parasitology ◽  
2007 ◽  
Vol 134 (7) ◽  
pp. 1013-1023 ◽  
Author(s):  
W. HAAS ◽  
C. WULFF ◽  
K. GRABE ◽  
V. MEYER ◽  
S. HAEBERLEIN

SUMMARYCercariae of Diplostomum spathaceum penetrate the skin of fish, and then migrate along blood vessels and tissues towards the head and the eye-lens. We studied their orientation behaviour in tail fins of guppies and in chemical concentration gradients within agar-filled choice chambers. In fins, they entered veins and orientated cranially, independent of the blood flow and living cells. In choice chambers, they were attracted by a small molecular fraction of fish serum, D-glucose (at 1, 10, and 1000 μm), D-mannose, D-maltotriose and Cl-ions, whereas D-glucosamine repelled them (even at 1·0 nm). Amino acids were not attractive, but arginine in tetrapeptides attracted at concentrations as low as 1 μm and melatonin at 0·4–4·3 pm. We suggest a preliminary model for the behaviour of diplostomula in fish fins and attracting (+) or repelling (−) host cues: (1) migration towards deeper skin layers and avoidance of skin surface, cues: Cl-ions (+ and −), glucose (+), glucosamine (−), light radiation (−); (2) orientation in cranial direction, cue: Cl-ions (+); (3) localization of blood vessels, cues: glucose (+), arginine-residues (+); (4) localization of the retina, cue: melatonin (+). A comparison with the navigation mechanisms of tissue-migrating schistosomules and hookworm larvae reveals an enormous diversity of strategies.


2016 ◽  
Vol 9 (6) ◽  
pp. 2581-2592 ◽  
Author(s):  
Ian C. Rumsey ◽  
John T. Walker

Abstract. The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The lack of measurements of sufficient chemical speciation and temporal extent make it difficult to develop accurate mass budgets and sufficient process level detail is not available to improve current air–surface exchange models. Over the past decade, significant advances have been made in the development of continuous air sampling measurement techniques, resulting with instruments of sufficient sensitivity and temporal resolution to directly quantify air–surface exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted to only one or a few of the compounds within the deposition budget. Here, the performance of the Monitor for AeRosols and GAses in ambient air (MARGA 2S), a commercially available online ion-chromatography-based analyzer is characterized for the first time as applied for air–surface exchange measurements of HNO3, NH3, NH4+, NO3−, SO2 and SO42−. Analytical accuracy and precision are assessed under field conditions. Chemical concentrations gradient precision are determined at the same sampling site. Flux uncertainty measured by the aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over a grass field. Analytical precision and chemical concentration gradient precision were found to compare favorably in comparison to previous studies. During the 3-week period, percentages of hourly chemical concentration gradients greater than the corresponding chemical concentration gradient detection limit were 86, 42, 82, 73, 74 and 69 % for NH3, NH4+, HNO3, NO3−, SO2 and SO42−, respectively. As expected, percentages were lowest for aerosol species, owing to their relatively low deposition velocities and correspondingly smaller gradients relative to gas phase species. Relative hourly median flux uncertainties were 31, 121, 42, 43, 67 and 56 % for NH3, NH4+, HNO3, NO3−, SO2 and SO42−, respectively. Flux uncertainty is dominated by uncertainty in the chemical concentrations gradients during the day but uncertainty in the chemical concentration gradients and transfer velocity are of the same order at night. Results show the instrument is sufficiently precise for flux gradient applications.


Soft Matter ◽  
2014 ◽  
Vol 10 (47) ◽  
pp. 9577-9584 ◽  
Author(s):  
Debarati Sarkar ◽  
Snigdha Thakur ◽  
Yu-Guo Tao ◽  
Raymond Kapral

Our studies on ring closure of polymer showed how the long-range nature of the chemical concentration gradients, self-generated by the presence of a catalytic bead on which a chemical reaction occurs, could cause a distant bead to chemotactically move towards to the source of the gradient. Such chemically-active polymers hence undergo ring closure or loop formation more rapidly than inactive polymer chains.


Sign in / Sign up

Export Citation Format

Share Document