Effect of channel aspect ratio of 3-D T-mixer on flow patterns and convective mixing for a wide range of Reynolds number

2017 ◽  
Vol 239 ◽  
pp. 1153-1176 ◽  
Author(s):  
C.A. Cortes-Quiroz ◽  
A. Azarbadegan ◽  
M. Zangeneh
1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 739 ◽  
Author(s):  
Hao Ma ◽  
Zhipeng Duan ◽  
Liangbin Su ◽  
Xiaoru Ning ◽  
Jiao Bai ◽  
...  

The flow in channels of microdevices is usually in the developing regime. Three-dimensional laminar flow characteristics of a nanofluid in microchannel plate fin heat sinks are investigated numerically in this paper. Deionized water and Al2O3–water nanofluid are employed as the cooling fluid in our work. The effects of the Reynolds number (100 < Re < 1000), channel aspect ratio (0 < ε < 1), and nanoparticle volume fraction (0.5% < Φ < 5%) on pressure drop and entropy generation in microchannel plate fin heat sinks are examined in detail. Herein, the general expression of the entropy generation rate considering entrance effects is developed. The results revealed that the frictional entropy generation and pressure drop increase as nanoparticle volume fraction and Reynolds number increase, while decrease as the channel aspect ratio increases. When the nanoparticle volume fraction increases from 0 to 3% at Re = 500, the pressure drop of microchannel plate fin heat sinks with ε = 0.5 increases by 9%. It is demonstrated that the effect of the entrance region is crucial for evaluating the performance of microchannel plate fin heat sinks. The study may shed some light on the design and optimization of microchannel heat sinks.


1992 ◽  
Vol 114 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Yoshiki Futaki ◽  
C. Samuel Martin

This paper describes the relationship between hydraulic losses and secondary flow within sinuous conduits with complicated bends. It has been found that the nature of secondary flow present in the bends is quite sensitive to the geometric configuration of the bend and the actual aspect ratio of the conduit section. Indeed, many different secondary flow patterns have been found to exist as the bend geometry is altered. A wide range of experiments has been conducted for various aspect ratios of a rectangular conduit with different curvatures.


2012 ◽  
Vol 29 (2) ◽  
pp. 207-215 ◽  
Author(s):  
C. H. Hsu ◽  
S. Y. Hu ◽  
K. Y. Kung ◽  
C. C. Kuo ◽  
C. C. Chang

AbstractThis paper studies the behavior of second grade viscoelastic fluid past a cavity in a horizontal channel. The effects of Reynolds number, fluid elasticity and the aspect ratio of the cavity on the flow field are simulated numerically. The equations are converted into the vorticity and stream function equations. The solution is obtained by the finite difference method.The behavior of viscoelastic fluids is quite different from the Newtonian fluid, due to the effects of fluid elasticity. Only one flow pattern appears when the Newtonian fluid past the cavity. However, three kinds of flow patterns appear while the viscoelastic fluids past the cavity by increasing Reynolds number from 20 to 300. The flow field is affected by the fluid elasticity as well as the aspect ratio of the cavity. The transitional flow pattern appears at lower Reynolds number as the higher elasticity fluid past the cavity with larger aspect ratio.


1989 ◽  
Vol 111 (4) ◽  
pp. 515-521 ◽  
Author(s):  
J. C. Han ◽  
P. Zhang

The present study investigated the combined effects of the flow channel aspect ratio, the rib turbulator configuration, and the sharp 180-deg turn on the distributions of the local pressure drop in three-pass rectangular channels for a Reynolds number range of 15,000 to 60,000. The channel aspect ratios (the channel width-to-height ratios W/H; ribs on the channel width, W, side) were 1, 1/2, and 1/4. The rib height-to-hydraulic diameter ratios (E/D) were 0.063, 0.047, and 0.039; the rib pitch-to-height ratios (P/E) were 5, 7.5, 10, and 15; the rib angles of attack (α) were 90, 60, and 45 deg. The results showed that the rib turbulators dominated the pressure drops in the first pass of the three-pass channel. The pressure drops in the two-pass and the three-pass channels were caused by both the rib turbulators and the sharp 180-deg turns. The differences of the pressure drops caused by the different rib configurations (rib angle, spacing, and height) were significant in the first pass. The differences, however, were diluted by the sharp 180-deg turns in the two-pass and the three-pass channels, and by the smaller channel aspect ratio (W/H changed from 1 to 1/4). The friction factor correlations for the first pass, the first two-pass, and the three-pass were obtained to account for the rib configuration, the channel aspect ratio, and the Reynolds number. The correlations can be used in the design of the turbine airfoil cooling passages.


2018 ◽  
Vol 859 ◽  
pp. 921-948 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

The individual and combined influences of aspect ratio ($A$), Reynolds number ($Re$) and Rossby number ($Ro$) on the leading-edge vortex (LEV) of a rotating wing of insect-like planform are investigated numerically. A previous study from our group has determined the wingspan to be an appropriate length scale governing the large-scale LEV structure. In this study, the $A$ range considered is further extended, to show that this scaling works well as $A$ is varied by a factor of 4 ($1.8\leqslant A\leqslant 7.28$) and over a $Re$ range of two orders of magnitude. The present study also extends this scaling for wings with an offset from the rotation axis, which is typically the case for actual insects and often for experiments. Remarkably, the optimum range of $A$ based on the lift coefficients at different $Re$ coincides with that observed in nature. The scaling based on the wingspan is extended to the acceleration terms of the Navier–Stokes equations, suggesting a modified scaling of $Ro$, which decouples the effects of $A$. A detailed investigation of the flow structures, by increasing $Ro$ in a wide range, reveals the weakening of the LEV due to the reduced spanwise flow, resulting in a reduced lift. Overall, the use of span-based scaling of $Re$ and $Ro$, together with $A$, may help reconcile apparent conflicting trends between observed variations in aerodynamic performance in different sets of experiments and simulations.


Author(s):  
Hani Hinnawi ◽  
Abdulnaser Al-abadi ◽  
Naser S. Al-Huniti

Abstract This work is concerned with studying the performance of SiO2–water nanofluid flow through a three-dimensional straight mini-channel with different values of aspect ratio (AR) of (0.5, 1.0, and 1.6) and a fixed hydraulic diameter under a uniform heat flux. The governing equations are developed and solved numerically using the finite volume method for a single-phase flow with standard Kappa-epsilon (κ–ε) turbulence model via a user-defined function (UDF) over Reynolds number (Re) range of (10,000-35,000). Numerical results indicated that the average Nusselt number ratio increases as Reynolds number and volume concentration of the nanoparticles increase for all values of the channel aspect ratio. The results indicated that the maximum enhancement of the heat transfer coefficient (benefit) achieved is 94.69% at AR=0.5, along with the lowest increase of pressure drop (penalty) of 13.1%. The highest performance evaluation criterion (PEC) of 1.64 is found at AR=0.5, Re=35,000, and 5% concentration.


1988 ◽  
Vol 110 (2) ◽  
pp. 321-328 ◽  
Author(s):  
J. C. Han

The effect of the channel aspect ratio on the distribution of the local heat transfer coefficient in rectangular channels with two opposite ribbed walls (to simulate turbine airfoil cooling passages) was determined for a Reynolds number range of 10,000 to 60,000. The channel width-to-height ratios (W/H, ribs on side W) were 1/4, 1/2, 1, 2, and 4. The test channels were heated by passing current through thin, stainless steel foils instrumented with thermocouples. The local heat transfer coefficients on the ribbed side wall and on the smooth side wall of each test channel from the channel entrance to the fully developed regions were measured for two rib spacings (P/e = 10 and 20). The rib angle-of-attack was kept at 90 deg. The local data in the fully developed region were averaged and correlated, based on the heat transfer and friction similarity laws developed for ribbed channels, to cover the ranges of channel aspect ratio, rib spacing, rib height, and Reynolds number. The results compare well with the published data for flow in a square channel with two opposite ribbed walls. The correlations can be used in the design of turbine airfoil cooling passages.


Author(s):  
Anjana N. Prajapati ◽  
Andallib Tariq

Abstract An experimental study on local heat transfer distributions and pressure loss in the closed matrix channels with an angle 45° has been conducted using liquid crystal thermography for a Reynolds number (Re) range 5800–14000. A total of five different configurations of matrixes have been considered for investigation. The thermo-hydraulic performance of the matrix structure with angle 45° is initially compared with that of the matrixes with angles 35° and 55° for a constant sub-channel aspect ratio (ARs) 0.8. Later, the sub-channel aspect ratio of matrix with angle 45° has been varied as 0.4 and 1.2 and the comparative results are presented. While comparing the performance parameters of different angles for the sub-channel aspect ratio 0.8, it is found that for lower Reynolds numbers (Re ≤ 8100), the angle 45° offers highest augmentation Nusselt number. However, for Re &gt; 8100, the angle 55° showed the highest augmentation Nusselt number. It has been also observed that the sub-channel aspect ratio 0.8 presents the highest augmentation Nusselt numbers as compared to ARs = 1.2 and 0.4 for Re ≤ 12400. Whereas, the friction factor fairly decreases with the increase in the sub-aspect ratio. A significant effect of angle has been found for friction factor as compared to sub-channel aspect ratio. The highest thermal performance factor (1.13) is obtained for the matrix with angle 45° and sub-channel aspect ratio 0.8 at Reynolds number 8100.


Author(s):  
J. Tenny ◽  
D. Maynes ◽  
B. W. Webb

The developing flow field in a parallel plate microchannel, induced by wall motion, has been modeled numerically. The flow is driven in this scenario not by an applied pressure gradient, but by the movement of the walls in the axial direction at a constant speed. This type of flow simulates the physical driving mechanism that exists in electro-osmotically generated flow with large channel diameter-to-Debye length ratios. The results are general, however, for any microscale flow induced by wall motion and resulting viscous pumping. The dynamics of the developing flow field were explored for channel length-to-hydraulic diameter ratios (aspect ratio) of 5, 10, and 20 at ten Reynolds numbers, Re (based on the wall velocity), below Re < 2000. The results show that far from the inlet the maximum fluid velocity occurs at the walls, as is expected, and the minimum velocity occurs at the channel center. Near the channel inlet, however, the centerline velocity is not a minimum but reaches a local maximum due to a resulting pressure imbalance generated by the wall motion. The ratio of the centerline velocity to wall velocity depends on the axial distance from the channel inlet, the Reynolds number and the channel aspect ratio. As the aspect ratio increases, the centerline velocity tends to approach the wall velocity far downstream from the inlet. Increases in the Reynolds number have the opposite effect on the centerline velocity. The hydrodynamic developing region, defined by that section of the channel where the wall shear stress is changing, also depends on the channel aspect ratio and Re. In general it is found that the developing region is significantly shorter than for pressure-driven flow at the same Re.


Sign in / Sign up

Export Citation Format

Share Document