scholarly journals Highly selective trace level detection of DNA damage biomarker using iron-based MAX compound modified screen-printed carbon electrode using differential pulse voltammetry

2021 ◽  
pp. 100057
Author(s):  
Lignesh Durai ◽  
Sushmee Badhulika
2015 ◽  
Vol 7 (10) ◽  
pp. 4159-4167 ◽  
Author(s):  
Abd-Elgawad Radi ◽  
Hossam M. Nassef ◽  
Mohamed I. Attallah

The electrochemical behavior of the antimalarial drug pyrimethamine (PMT) was examined at a screen printed carbon electrode (SPCE) in different aqueous supporting electrolytes using cyclic voltammetry (CV) and differential pulse voltammetry (DPV).


2020 ◽  
Vol 1 (1) ◽  
pp. 39-45
Author(s):  
Farahdilla Andhika

Pada penelitian ini, modifikasi Screen Printed Carbon Electrode (SPCE) secara fisik dilakukan dengan menggunakan poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid) (PEDOT-PSS) untuk meningkatkan sensitivitas penentuan fenol secara voltametri. Pengukuran fenol dilakukan dengan metode differential pulse voltammetry (DPV) pada kisaran potensial -0,5 sampai 1 Volt, durasi 180 detik, potensial deposisi -0,5 Volt, dan kecepatan penyapuan 100 mV/s pada pH 6-9, rentang konsentrasi fenol 0-100 mikro M, serta konsentrasi PEDOT-PSS sebesar 0-100%. Berdasarkan hasil penelitian, peningkatan konsentrasi PEDOT-PSS berpengaruh terhadap respon arus. Kondisi optimum dicapai pada pH 8 dengan konsentrasi PEDOT-PSS 50%, sensitivitas sebesar 0.009 mikro A/mikro M dengan batas deteksi 0.1595 mikro M.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xinke Liu ◽  
Rajalakshmi Sakthivel ◽  
Chia-Yin Cheng ◽  
Jiangliu Luo ◽  
Lijun Song ◽  
...  

AbstractPolychlorinated biphenyls (PCBs) are persistent organic pollutants that are widely distributed in the environment. It is noteworthy that the PCBs are endocrine-disrupting substances, and their toxicity induces cancer and damage to the mammalian reproductive system, immune system, stomach, skin, liver, etc. This work aimed to synthesize 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate/tin disulfide composite material and to study its material properties, electrochemical properties, and application to PCB detection. The nanostructured tin disulfide (SnS2) synthesized by hydrothermal technique and 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate were sequentially modified onto the disposable screen-printed carbon electrode (SPCE) via titration using a micropipette. The 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate (β-CD) improved the selectivity of the modified electrode. The fabricated β-CD/SnS2/SPCE was employed to determine the presence of PCBs by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The detection range was 0.625–80 μM, with a limit detection of approximately 5 μM. The electrodes were as stable as 88% after 7 days’ storage. The results showed that the β-CD successfully encapsulated PCBs to achieve an electrochemical sensor that reduced the time and increased the convenience of PCBs detection.


2015 ◽  
pp. 97-102
Author(s):  
Ani Mulyasuryani ◽  
Alfita Savitri

Hydroquinone in whitening face cream has been banned since 2008, but is still found facial bleaching creams containing hydroquinone. Therefore, in this study have been developed voltammetric method for the determination hydroquinone in face whitening cream. This study has been carried out optimization of pH and measurement conditions. Optimizationof pH has been done in cyclic voltammetry, while the optimization of measurement carried out by differential pulse voltammetry. In this study, using a screen printed carbon electrode with a three electrode system. The results showed that the increase in pH causes a decrease in the anodic peak potential (Epa) of hydroquinone. The optimum conditions resulted at pH 2 in which the anodic current (Ipa) is the highest. The optimum condition resulted at high pulse 200 mV and scan rate at 15 mV/sec. The linear regression concentration is 1-100 μM, limit of detection is 0.015 μM and sensitivity is 0.0652 μM/µA. The results showed that the concentration of hydroquinone in the face whitening cream samples ranged from 0 to 0.02%DOI :http://dx.doi.org/10.15408/jkv.v0i0.3145.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3373
Author(s):  
Mohd Hazani Mat Zaid ◽  
Che Engku Noramalina Che-Engku-Chik ◽  
Nor Azah Yusof ◽  
Jaafar Abdullah ◽  
Siti Sarah Othman ◽  
...  

Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10−13 M with a wide detection range from 1.0 × 10−6 to 1.0 × 10−12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.


2008 ◽  
Vol 61 (12) ◽  
pp. 962 ◽  
Author(s):  
Shao-Hua Zuo ◽  
Ling-Fan Zhang ◽  
Yan-Hui Zhao ◽  
Hui-Hui Yuan ◽  
Min-Bo Lan ◽  
...  

A simple, disposable and inexpensive electrochemical DNA biosensor based on a zirconia (ZrO2) modified thin film screen-printed electrode (ZrO2/SPE) has been developed. Short DNA sequences (21 monomer units) from the Escherichia coli pathogen, modified with a phosphate group at the 5′ end, were attached to the surface of the electrode through the affinity of the phosphate group for zirconia, to produce an effective DNA probe (ssDNA/ZrO2/SPE). DNA immobilization and hybridization were characterized using differential pulse voltammetry by employing methylene blue as redox indicator. Target sequences hybridized with the probe resulted in a decrease of the reduction peak current of methylene blue intercalated into the probe. The response of a non-complementary sequence and a single base pair mismatch sequence were both clearly distinguished from that of a complementary sequence. The developed biosensor had a high selectivity and sensitivity towards hybridization detection (10–10 M complementary DNA detectable). Making use of screen-printed technology, the fabrication of the biosensors exhibited satisfactory reproducibility, investigated by cyclic voltammetry and differential pulse voltammetry. The relative standard deviation was found to be <3.0% for six bare SPEs and six ssDNA-modified SPEs (ssDNA/ZrO2/SPE) from a batch.


Sign in / Sign up

Export Citation Format

Share Document