Medium term effect of the seven-minute high intensity workout on body weight, lean body mass, grip strength and heart rate

2015 ◽  
Vol 11 (6) ◽  
pp. S155
Author(s):  
Lama Mattar
1988 ◽  
Vol 74 (2) ◽  
pp. 107-114
Author(s):  
D. J. Smith ◽  
R. J. Pethybridge ◽  
A Duggan

SummaryThe relationship between physical fitness, anthropometric measures, and the scores in three submaximal step tests have been evaluated in a group of 30 male subjects. Physical fitness was assessed as VO2max measured directly during uphill treadmill running. Each submaximal exercise test was of six minutes duration and the heart rate recorded during the last minute (fH6) constituted the test score. Significant negative correlation coefficients were found between VO2max and each test score while lean body mass, gross body weight and body surface area were allpositively correlated with VO2max (1/min). The score in the least severe step test was included with anthropometric measures in multiple linear regression analysis for the prediction of VO2max and a number of prediction equations were derived. It was found that when lean body mass is calculated from skinfold measurements and weight, VO2max can be calculated from the equation:VO2max(1/min) = 1.470 + 0.0614 × Lean Body mass −0.0131 × fH6This equation accounts for 73% of the total variation of VO2max. If lean body mass cannot be calculated, a combination of gross body weight and age plus fH6 gives the equation:VO2max = 3.614 + 0.0349 × Weight – 0.0177 × fH6−0.0161 × Ageaccounting for 66% of the variance. The test has the following advantages over those currently employed:It is simple to administer requiring 6 minutes of stepping onto a 32 cm platform—the height of a gymnasium bench—20 times per minute.Although ideally an assessment oflean body mass is required, gross body weight plus age is a good second best.It is submaximal, minimising the stress on the individual (mean heart rate achieved 121 beats per minute).Its accuracy in terms of its ability to predict maximal aerobic power is better than either the Ohio or Harvard University tests.It is suggested that this test could be used where maximal testing is contraindicated or where currently used tests are insufficiently accurate.


Author(s):  
Francesco Di Sabato ◽  
Pamela Fiaschetti ◽  
Carlina V. Albanese ◽  
Roberto Passariello ◽  
Filippo Rossi Fanelli ◽  
...  
Keyword(s):  

2002 ◽  
Vol 57 (3) ◽  
pp. 107-114 ◽  
Author(s):  
Pauline L. Martin ◽  
Joan Lane ◽  
Louise Pouliot ◽  
Malcolm Gains ◽  
Rudolph Stejskal ◽  
...  

2021 ◽  
Vol 15 (10) ◽  
pp. 3245-3249
Author(s):  
Gökhan Atasever ◽  
Fatih Kiyici ◽  
Deniz Bedir ◽  
Fatih Ağduman

Aim: Biathlon is a sport that combines cross-country skiing and rifle shooting. The athlete is fast in the cross-country skiing section, in the gun shooting section, the heart rate should be low. This study aims to determine the hitting rate of the shots made with different training loads on low altitude in elite biathletes in terms of maximum speed and physiological variables. Methods: To evaluate shooting performances first with the resting pulse and then after 2.5 km skiing respectively with 50%, 70% and 100% pulse rate which is separately calculated for each athlete according to karvonen formula. Results: Our findings show that while there was negative relation between maximum speed and body fat there was a positive relation with lean body mass. It has been determined that low body fat percentage and high lean body mass are effective at the athletes’ maximum speed and the pulse level with the highest target shooting accuracy rate was at rest and 70% in the second level. Conclusion: Since the pulse of the athlete who comes to the shooting area cannot be reduced to a resting level in a short time, focusing the 70% pulse zone may be beneficial in terms of shooting accuracy and acceleration after the shot. The lowest results in target shooting accuracy were seen at 50% and 100% loads. Keywords: Athletes, performance, heart, rate, lean body mass.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Stacy T Sims ◽  
Sandra Tsai ◽  
Marcia L Stefanick

Background: Barriers to physical activity for obese women include overheating, sweating, fatigue, exhaustion, and rapid heart rate. Adipose tissue acts as a thermal insulator, promoting a greater heat load on the nonfat tissues, reducing heat tolerance; exercise causes a rise in body temperature with an inability to dissipate heat contributing to reduced exercise tolerance. With difficulties of thermoregulation in the sedentary obese population, the aspect of attenuating the discomfort thus associated may encourage continuation of exercise. A heat sink applied to palmar surfaces extracts heat and cools the venous blood, reducing thermal strain by enhancing the volume of cooled venous return. We hypothesized that palmar cooling using a rapid thermal exchange device (RTX) during exercise would attenuate the thermal discomfort of exercise of sedentary obese women, improving exercise tolerance. Methods: To examine whether palmar cooling would impact exercise tolerance in obese women, 24 healthy women aged 30–45 years, with no history of long term structured exercise, a body mass of 120–135% above ideal and/or BMI between 30 and 34.9 were recruited. Women were randomized into a cooling (RXT with 16°C water circulating) or a control (RTX with 37°C water circulating) group and attended 3 exercise sessions a week for 3-months (12 weeks). Each session was comprised of 10 min body weight exercises, 25–45 min treadmill walking at 70–85% HRR with the RTX device, and 10 min of core strengthening exercises. The performance marker was a 1.5 mi walk for time; conducted on the first and last days of the intervention. Mixed models were used to model each of the outcomes as a function of thermal strain, time and treatment with covariates of speed, heart rate, distance, and the interaction of the main effects included in the model. Results: Groups were matched at baseline for key variables (time for 1.5 mile walk test, resting and exercising heart rate [HR], blood pressure [BP], waist circumference [WC], body weight, body mass index [BMI]). Among the cooling group, time to complete the 1.5mile walk test was significantly faster (31.6 ± 2.3 vs. 24.6 ± 2.5 min, pre vs. post, P< 0.01). A greater average exercising HR was observed (136 vs. 154 bpm, pre vs. post, P <0.001), with a significant reduction in WC (41.8 ± 3.1 vs. 39.1 ± 2.2 inches, pre vs. post, P< 0.01) and resting BP (139/84 ± 124/70 mmHg, pre vs. post, P < 0.025). There were no significant differences observed in the control group. Conclusion: Results indicate that exercise tolerance in obese women improved with cooling during exercise, more so than those women who did not have cooling. An improvement in blood pressure, heart rate, waist circumference, and overall aerobic fitness was observed. These findings suggest that by reducing thermal discomfort during exercise, tolerance increases, thus improving cardiovascular parameters of obese women.


1965 ◽  
Vol 20 (5) ◽  
pp. 934-937 ◽  
Author(s):  
ŠtĚpánka Šprynarová ◽  
Jana Pařízková

Seven obese boys submitted themselves to a 7-week regimen of dietary restriction and regular exercise. Measurements were made at the beginning and end of the period. A significant drop in body weight was achieved by reduction of adipose tissue and also of lean body mass (LBM). The ratio of LBM to body weight increased. These changes were associated with significant drop of maximum oxygen consumption. The increase of the Vo2 max per kilogram of body weight and the drop of the Vo2 max per kilogram of LBM were not significant. Between the decrease of LBM and the drop of Vo2 max there exists a significant negative relationship; and between the decrease of LBM and the rise of the Vo2 max per kilogram of body weight, a significant positive relationship. The decrease of Vo2 max in these boys was not considered due to deteriorated circulatory or respiratory function but to changes in body composition. maximum O2 consumption; body weight reduction; lean body mass Submitted on February 17, 1964


1977 ◽  
Vol 43 (1) ◽  
pp. 126-132 ◽  
Author(s):  
J. E. Greenleaf ◽  
E. M. Bernauer ◽  
L. T. Juhos ◽  
H. L. Young ◽  
J. T. Morse ◽  
...  

To determine the cause of the body weight loss during bed rest (BR), fluid balance and anthropometric measurements were taken from seven men (19–21 yr) during three 2-wk BR periods which were separated by 3-wk ambulatory recovery periods. Caloric intake was 3,073 +/- 155 (SD) kcal/day. During two of the three BR periods they performed supine isotonic exercise at 68% of VO2max on the ergometer for 1 h/day; or supine isometric exercise at 21% of maximal leg extension force for 1 min followed by a 1-min rest for 1 h/day. No prescribed exercise was given during the other BR period. During BR, body weight decreased slightly with no exercise (-0.43 kg, NS), but decreased significantly (P less than 0.05) by -0.91 kg with isometric and by -1.77 kg with isotonic exercise. About one-third of the weight reduction with isotonic exercise was due to fat loss (-0.69 kg) and, the remainder, to loss of lean body mass (-0.98 kg). It is concluded that the reduction in body weight during bed rest has two major components: First, a loss of lean body mass caused by assumption of the horizontal body position that is independent of the metabolic rate. Second, a loss of body fat content that is proportional to the metabolic rate.


Sign in / Sign up

Export Citation Format

Share Document