Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants

2013 ◽  
Vol 65 ◽  
pp. 204-210 ◽  
Author(s):  
Robert Koller ◽  
Stefan Scheu ◽  
Michael Bonkowski ◽  
Christophe Robin
Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2008 ◽  
Vol 305 (1-2) ◽  
pp. 267-280 ◽  
Author(s):  
K. Turnau ◽  
T. Anielska ◽  
P. Ryszka ◽  
S. Gawroński ◽  
B. Ostachowicz ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Gamal M. Abdel-Fattah ◽  
Wafaa M. Shukry ◽  
Mahmoud M.B. Shokr ◽  
Mai A. Ahmed

This study aimed to investigate the effects of arbuscular mycorrhizal (AM) fungi with different levels of NPK fertilizers on yield production of common bean plants which common bean plants were subjected to five levels of NPK fertilizers (0, 25, 50, 75, 100 %). Application of AMF significantly increased the growth and yield components of common beans with minimized the levels of NPK comparing to equivalents non-mycorrhizal ones. The results obtained revealed that inoculation with AMF and the concentrations 50% and 75% of NPK with AMF are the greater than other concentrations and non-mycorrhizal plants. Mycorrhizal Common bean plants had significantly higher number of pods, length of one pod, pods weight, 100 seeds weight, weight of seed/plant and intensity of mycorrhizal colonization(M%) . Concentrations of nutrients (N, P, K, Ca and Mg) and total carbohydrates, crude protein and mycorrhizal dependency of some yield parameters were significantly increased in mycorrhizal plants at different NPK levels when comparing to those of non-mycorrhizal plants paticularly at (50% and 75%) concentration of NPK, but lower Na concentration in mycorrhizal common bean seeds than those of non-mycorrhizal.Int J Appl Sci Biotechnol, Vol 4(2): 191-197


1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.


2021 ◽  
Vol 10 (1) ◽  
pp. e10010111435
Author(s):  
Emanuela Lima dos Santos ◽  
Brena Coutinho Muniz ◽  
Beathriz Godoy Vilela Barbosa ◽  
Marcia Maria Camargo Morais ◽  
Francineyde Alves da Silva ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are known to provide plant species with several benefits, such as an increased production of bioactive compounds. However, it is yet to be defined whether extracts of mycorrhizal plants are more efficient in vitro antibacterial actions when compared to non-mycorrhizal plants. We tested the hypothesis of whether or not, methanolic extracts of Libidibia ferrea fruits, from plants established in the field and inoculated with AMF, have higher antibacterial action when inoculated with Acaulospora longula, Claroideoglomus etunicatum or Gigaspora albida. In addition, native L. ferrea fruits collected from the Caatinga area were also tested. The extracts of L. ferrea fruits inoculated with A. longula had higher in vitro antibacterial action in relation to the extracts of fruits from non-inoculated plants (p <0.05) thus characterizing the first record of different antibacterial actions of plant extracts due to inoculation with AMF. The extracts of L. ferrea fruits inoculated with A. longula were more efficient in inhibiting growth of Gram-negative bacteria. The zone diameters of inhibition ranged from 2.48 % to 7.56 % larger than the zones of the non-inoculated L. ferrea fruit extracts. The inoculation of L. ferrea with AMF may represent an alternative way of producing fruits with different antibacterial activity.


2018 ◽  
Vol 156 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Caixia Liu ◽  
Sabine Ravnskov ◽  
Fulai Liu ◽  
Gitte H. Rubæk ◽  
Mathias N. Andersen

AbstractDeficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI.A greenhouse experiment was conducted with potato grown with (P1) or without (P0) P fertilization, with AMF (M1+:Rhizophagus irregularisor M2+:Glomus proliferum) or AMF-free control (M−) and subjected to full irrigation (FI), DI or partial root-zone drying (PRD).Inoculation of M1+ and M2+ maintained or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused by stimulation of plant P/N uptake and carbon partitioning toward roots and tubers. However, plant growth response to AMF was not related to the percentage of AMF root colonization. Arbuscular mycorrhizal fungi can maintain and improve P/N uptake, WUE and growth of plants both at high/low P levels and under FI/DI. If this is also the case under field conditions, it should be implemented for sustainable potato production.


Ecosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Jan Frouz ◽  
Jabbar Moradi ◽  
David Püschel ◽  
Jana Rydlová

2011 ◽  
Vol 24 (12) ◽  
pp. 1562-1572 ◽  
Author(s):  
Laura Miozzi ◽  
Marco Catoni ◽  
Valentina Fiorilli ◽  
Philip M. Mullineaux ◽  
Gian Paolo Accotto ◽  
...  

Tomato (Solanum lycopersicum) can establish symbiotic interactions with arbuscular mycorrhizal (AM) fungi, and can be infected by several pathogenic viruses. Here, we investigated the impact of mycorrhization by the fungus Glomus mosseae on the Tomato spotted wilt virus (TSWV) infection of tomato plants by transcriptomic and hormones level analyses. In TSWV-infected mycorrhizal plants, the AM fungus root colonization limited virus-induced changes in gene expression in the aerial parts. The virus-responsive upregulated genes, no longer induced in infected mycorrhizal plants, were mainly involved in defense responses and hormone signaling, while the virus-responsive downregulated genes, no longer repressed in mycorrhizal plants, were involved in primary metabolism. The presence of the AM fungus limits, in a salicylic acid-independent manner, the accumulation of abscissic acid observed in response to viral infection. At the time of the molecular analysis, no differences in virus concentration or symptom severity were detected between mycorrhizal and nonmycorrhizal plants. However, in a longer period, increase in virus titer and delay in the appearance of recovery were observed in mycorrhizal plants, thus indicating that the plant's reaction to TSWV infection is attenuated by mycorrhization.


2008 ◽  
Vol 20 (1) ◽  
pp. 29-37 ◽  
Author(s):  
José Beltrano ◽  
Marta G. Ronco

The aim of this paper was to investigate the contribution of the arbuscular mycorrhizal fungus Glomus claroideum to drought stress tolerance in wheat plants grown under controlled conditions in a growth chamber, and subjected to moderate or severe water stress and rewatering. Water stress tolerance was determined through total dry weight, leaf relative water content, leakage of solutes and leaf chlorophyll and protein concentrations in mycorrhizal and non-mycorrhizal wheat plants. Total dry weight and leaf chlorophyll concentrations were significantly higher in mycorrhizal plants after moderate or severe water stress treatments compared with non-mycorrhizal ones. Electrolyte leakage was significantly lower in water-stressed inoculated plants. Compared to non-inoculated plants, leaf relative water content and total protein concentration of inoculated individuals increased only under severe water stress. When irrigation was re-established, mycorrhizal plants increased their total dry weight and leaf chlorophyll concentration, and recovered cell membrane permeability in leaves compared with non-mycorrhizal plants. In conclusion, root colonization by G. claroideum could be an adequate strategy to alleviate the deleterious effects of drought stress and retard the senescence syndrome in wheat.


Sign in / Sign up

Export Citation Format

Share Document