scholarly journals Arbuscular Mycorrhizal Symbiosis Limits Foliar Transcriptional Responses to Viral Infection and Favors Long-Term Virus Accumulation

2011 ◽  
Vol 24 (12) ◽  
pp. 1562-1572 ◽  
Author(s):  
Laura Miozzi ◽  
Marco Catoni ◽  
Valentina Fiorilli ◽  
Philip M. Mullineaux ◽  
Gian Paolo Accotto ◽  
...  

Tomato (Solanum lycopersicum) can establish symbiotic interactions with arbuscular mycorrhizal (AM) fungi, and can be infected by several pathogenic viruses. Here, we investigated the impact of mycorrhization by the fungus Glomus mosseae on the Tomato spotted wilt virus (TSWV) infection of tomato plants by transcriptomic and hormones level analyses. In TSWV-infected mycorrhizal plants, the AM fungus root colonization limited virus-induced changes in gene expression in the aerial parts. The virus-responsive upregulated genes, no longer induced in infected mycorrhizal plants, were mainly involved in defense responses and hormone signaling, while the virus-responsive downregulated genes, no longer repressed in mycorrhizal plants, were involved in primary metabolism. The presence of the AM fungus limits, in a salicylic acid-independent manner, the accumulation of abscissic acid observed in response to viral infection. At the time of the molecular analysis, no differences in virus concentration or symptom severity were detected between mycorrhizal and nonmycorrhizal plants. However, in a longer period, increase in virus titer and delay in the appearance of recovery were observed in mycorrhizal plants, thus indicating that the plant's reaction to TSWV infection is attenuated by mycorrhization.

2011 ◽  
Vol 24 (8) ◽  
pp. 867-878 ◽  
Author(s):  
Clare Gough ◽  
Julie Cullimore

The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Josiah E. Hardesty ◽  
Jeffrey B. Warner ◽  
Ying L. Song ◽  
Eric C. Rouchka ◽  
Chih-Yu Chen ◽  
...  

AbstractThe intestine interacts with many factors, including dietary components and ethanol (EtOH), which can impact intestinal health. Previous studies showed that different types of dietary fats can modulate EtOH-induced changes in the intestine; however, mechanisms underlying these effects are not completely understood. Here, we examined intestinal transcriptional responses to EtOH in WT and transgenic fat-1 mice (which endogenously convert n6 to n3 polyunsaturated fatty acids [PUFAs]) to identify novel genes and pathways involved in EtOH-associated gut pathology and discern the impact of n3 PUFA enrichment. WT and fat-1 mice were chronically fed EtOH, and ileum RNA-seq and bioinformatic analyses were performed. EtOH consumption led to a marked down-regulation of genes encoding digestive and xenobiotic-metabolizing enzymes, and transcription factors involved in developmental processes and tissue regeneration. Compared to WT, fat-1 mice exhibited a markedly plastic transcriptome response to EtOH. Cell death, inflammation, and tuft cell markers were downregulated in fat-1 mice in response to EtOH, while defense responses and PPAR signaling were upregulated. This transcriptional reprogramming may contribute to the beneficial effects of n3 PUFAs on EtOH-induced intestinal pathology. In summary, our study provides a reference dataset of the intestinal mucosa transcriptional responses to chronic EtOH exposure for future hypothesis-driven mechanistic studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mary-Lorène Goddard ◽  
Lorène Belval ◽  
Isabelle R. Martin ◽  
Lucie Roth ◽  
Hélène Laloue ◽  
...  

Grapevine (Vitis vinifera L.) is one of the most important crops worldwide but is subjected to multiple biotic and abiotic stresses, especially related to climate change. In this context, the grapevine culture could take advantage of symbiosis through association with arbuscular mycorrhizal fungi (AMF), which are able to establish symbiosis with most terrestrial plants. Indeed, it is well established that mycorrhization improves grapevine nutrition and resistance to stresses, especially water stress and resistance to root pathogens. Thus, it appears essential to understand the effect of mycorrhization on grapevine metabolism and defense responses. In this study, we combined a non-targeted metabolomic approach and a targeted transcriptomic study to analyze changes induced in both the roots and leaves of V. vinifera cv. Gewurztraminer by colonization with Rhizophagus irregularis (Ri). We showed that colonization of grapevine with AMF triggers major reprogramming of primary metabolism in the roots, especially sugar and fatty acid metabolism. On the other hand, mycorrhizal roots had decreased contents of most sugars and sugar acids. A significant increase in several fatty acids (C16:1, linoleic and linolenic acids and the C20 arachidonic and eicosapentaenoic acids) was also detected. However, a downregulation of the JA biosynthesis pathway was evidenced. We also found strong induction of the expression of PR proteins from the proteinase inhibitor (PR6) and subtilase (PR7) families in roots, suggesting that these proteins are involved in the mycorrhiza development but could also confer higher resistance to root pathogens. Metabolic changes induced by mycorrhization were less marked in leaves but involved higher levels of linoleic and linolenic acids and decreased sucrose, quinic, and shikimic acid contents. In addition, Ri colonization resulted in enhanced JA and SA levels in leaves. Overall, this study provides a detailed picture of metabolic changes induced by AMF colonization in a woody, economically important species. Moreover, stimulation of fatty acid biosynthesis and PR protein expression in roots and enhanced defense hormone contents in leaves establish first insight in favor of better resistance of grapevine to various pathogens provided by AMF colonization.


2019 ◽  
Author(s):  
M. Rosario Ramírez-Flores ◽  
Elohim Bello-Bello ◽  
Rubén Rellán-Álvarez ◽  
Ruairidh J. H. Sawers ◽  
Víctor Olalde-Portugal

ABSTRACTPlant root systems play an essential role in nutrient and water acquisition. In resource-limited soils, modification of root system architecture is an important strategy to optimize plant performance. Most terrestrial plants also form symbiotic associations with arbuscular mycorrhizal fungi to maximize nutrient uptake. In addition to direct delivery of nutrients, arbuscular mycorrhizal fungi benefit the plant host by promoting root growth. Here, we aimed to quantify the impact of arbuscular mycorrhizal symbiosis on root growth and nutrient uptake in maize. Inoculated plants showed an increase in both biomass and the total content of twenty quantified elements. In addition, image analysis showed mycorrhizal plants to have denser, more branched root systems. For most of the quantified elements, the increase in content in mycorrhizal plants was proportional to root and overall plant growth. However, the increase in boron, calcium, magnesium, phosphorus, sulfur and strontium was greater than predicted by root system size alone, indicating fungal delivery to be supplementing root uptake.


2020 ◽  
Author(s):  
Stephanie J Watts-Williams ◽  
Stefanie Wege ◽  
Sunita A Ramesh ◽  
Oliver Berkowitz ◽  
Matthew Gilliham ◽  
...  

AbstractLow soil zinc (Zn) availability is a limiting factor for crop yield, and increasing Zn content is a major target for the biofortification of major crops. Arbuscular mycorrhizal (AM) fungi associate with the roots of most terrestrial plant species and improve the host plant’s growth and nutrition through the mycorrhizal pathway of nutrient uptake. Although the physiology of Zn uptake through the mycorrhizal pathway is well established, the identity of the molecular components responsible for Zn transport in the mycorrhizal pathway are unknown.RNA-seq analysis identified the putative Zn transporter gene MtZIP14 by its marked up-regulation in Medicago truncatula roots when colonised by the AM fungus Rhizophagus irregularis under varying soil Zn supply. Expression of GFP-tagged MtZIP14 in roots revealed that it is exclusively localised to the site of plant-fungal nutrient exchange in cortical cells, the peri-arbuscular membrane. Expression of MtZIP14 in a yeast mutant lacking Zn transport function restored growth under low Zn availability. M. truncatula MtZIP14 loss-of-function mutants had reduced shoot biomass compared to the wild-type when colonised by AM fungi and grown under low Zn. Vesicular and arbuscular colonisation, but not hyphal colonisation, were also lower in mtzip14 mutant plants.Based on these results we propose that MtZIP14 plays a key role in the transport of Zn from AM fungus to plant across the peri-arbuscular membrane, and MtZIP14 function is crucial to plant competitiveness in a low Zn soil.Significance statementMajority of crop plant species associate with arbuscular mycorrhizal fungi, which can increase plant nutrient uptake. Improving our knowledge of how Zn is taken up in mycorrhizal plants will lead to improved plant and human Zn nutrition outcomes. Here, we report a novel plant transporter with a major role in Zn nutrition of mycorrhizal plants. MtZIP14 is involved in Zn transport, is exclusively localised to the specialised plant-fungal interface in roots, and impairment of MtZIP14 gene function results in negative impacts on both plant growth and Zn nutrition.


2014 ◽  
Vol 20 ◽  
pp. 60-65
Author(s):  
I. H. Budzanivska ◽  
T. O. Bova ◽  
O. O. Kucheriavenko ◽  
O. V. Pyrih ◽  
O. O. Dmytruk

The paper presents the results of developmental study of viral infection caused by Potato virus M under the impact of microbial preparations on potato plants. Use of biopreparations Biogran and Bactopaslen, at artificial plants infection with PVM had ensured development of higher plants infected with virus, increase of total chlorophyll content compared to control, decrease of virus concentration in plants and activity of ribonuclease enzyme in potato plants infected with PVM.


2017 ◽  
Vol 63 (No. 2) ◽  
pp. 62-69 ◽  
Author(s):  
Chen Xiuhua ◽  
Zhang Rui ◽  
Wang Fengling

The present study investigated the impact of transgenic Bacillus thuringiensis (Bt) cotton on several aspects of arbuscular mycorrhizal (AM) fungus Funneliformis mosseae. The results showed that Bt cotton significantly inhibited spore germination and pre-symbiotic hyphal growth. The appressorium density, arbuscule frequency and colonization intensity in Bt roots were also decreased. The statistical analysis demonstrated that the transformation event resulted in the inhibition of hyphal development and colonization. The reduced interaction between AM fungi and plants could affect nutrient uptake and transportation in plant-fungus symbiosis. The mechanism might involve the direct toxicity of Bt toxins or the interference of signal perception between AM fungus and Bt cotton.  


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sonia Campo ◽  
Blanca San Segundo

Abstract Most land plants form beneficial associations with arbuscular mycorrhizal (AM) fungi which improves mineral nutrition, mainly phosphorus, in the host plant in exchange for photosynthetically fixed carbon. Most of our knowledge on the AM symbiosis derives from dicotyledonous species. We show that inoculation with the AM fungus Funneliformis mosseae stimulates growth and increases Pi content in leaves of rice plants (O. sativa, cv Loto, ssp japonica). Although rice is a host for AM fungi, the systemic transcriptional responses to AM inoculation, and molecular mechanisms underlying AM symbiosis in rice remain largely elusive. Transcriptomic analysis identified genes systemically regulated in leaves of mycorrhizal rice plants, including genes with functions associated with the biosynthesis of phospholipids and non-phosphorus lipids (up-regulated and down-regulated, respectively). A coordinated regulation of genes involved in the biosynthesis of phospholipids and inositol polyphosphates, and genes involved in hormone biosynthesis and signaling (jasmonic acid, ethylene) occurs in leaves of mycorrhizal rice. Members of gene families playing a role in phosphate starvation responses and remobilization of Pi were down-regulated in leaves of mycorrhizal rice. These results demonstrated that the AM symbiosis is accompanied by systemic transcriptional responses, which are potentially important to maintain a stable symbiotic relationship in rice plants.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 635 ◽  
Author(s):  
Silvia Proietti ◽  
Gaia Salvatore Falconieri ◽  
Laura Bertini ◽  
Ivan Baccelli ◽  
Elena Paccosi ◽  
...  

Plant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system. Recently, by a genome-wide association study performed in Arabidopsis, we identified GLYI4 as a novel player in the crosstalk between jasmonate (JA) and salicylic acid (SA) hormone pathways. Here, we investigated the impact of GLYI4 knock-down on MG scavenging and on JA pathway. In glyI4 mutant plants, we observed a general stress phenotype, characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness. Accumulation of MG in glyI4 plants led to lower efficiency of the JA pathway, as highlighted by the increased susceptibility of the plants to the pathogenic fungus Plectospherella cucumerina. Moreover, MG accumulation brought about a localization of GLYI4 to the plasma membrane, while MeJA stimulus induced a translocation of the protein into the cytoplasmic compartment. Collectively, the results are consistent with the hypothesis that GLYI4 is a hub in the MG and JA pathways.


2021 ◽  
Vol 22 (5) ◽  
pp. 2703
Author(s):  
Mahnaz Kiani ◽  
Becky Bryan ◽  
Charles Rush ◽  
Adrianna Szczepaniec

(1) Background: The wheat curl mite (Aceria tosichella Keifer) is a key pest of wheat (Triticum aestivum L.) worldwide. While a number of wheat cultivars resistant to the mites have been employed to minimize the impact on the yield and quality of grain, little is known regarding the mechanisms underlying host plant resistance. Therefore, the goal of this study was to explore changes in transcriptome of resistant and susceptible wheat in order to quantify the molecular changes that drive host plant resistance. (2) Methods: Two varieties, wheat curl mite-susceptible (Karl 92) and wheat curl mite-resistant (TAM112) wheat, both at 2-week postemergence, were used in this study. Half of the plants were exposed to wheat curl mite herbivory and half remained mite-free and served as controls. Transcriptome changes were quantified using RNA-seq and compared among treatments to identify genes and pathways affected by herbivores. (3) Results: We identified a number of genes and pathways involved in plant defenses against pathogens, herbivores, and abiotic stress that were differentially expressed in the resistant wheat exposed to wheat curl mite herbivory but were unaffected in the susceptible wheat. (4) Conclusions: Our outcomes indicated that resistant wheat counteracts wheat curl mite exposure through effective induction of genes and pathways that enhance its defense responses.


Sign in / Sign up

Export Citation Format

Share Document