Experimental climate warming alters the relationship between fungal root symbiosis and Sphagnum litter phenolics in two peatland microhabitats

2017 ◽  
Vol 105 ◽  
pp. 153-161 ◽  
Author(s):  
Philippe Binet ◽  
Soraya Rouifed ◽  
Vincent E.J. Jassey ◽  
Marie-Laure Toussaint ◽  
Geneviève Chiapusio
2020 ◽  
Author(s):  
Shengwei Zong ◽  
Christian Rixen

<p><span>Snow is an important environmental factor determining distributions of plant species in alpine ecosystems. During the past decades, climate warming has resulted in significant reduction of snow cover extent globally, which led to remarkable alpine vegetation change. Alpine vegetation change is often caused by the combined effects of increasing air temperature and snow cover change, yet the relationship between snow cover and vegetation change is currently not fully understood. To detect changes in both snow cover and alpine vegetation, a relatively fine spatial scales over long temporal spans is necessary. In this study in alpine tundra of the Changbai Mountains, Northeast China, we (1) quantified spatiotemporal changes of spring snow cover area (SCA) during half a century by using multi-source remote sensing datasets; (2) detected long-term vegetation greening and browning trends at pixel level using Landsat archives of 30 m resolution, and (3) analyzed the relationship between spring SCA change and vegetation change. Results showed that spring SCA has decreased significantly during the last 50 years in line with climate warming. Changes in vegetation greening and browning trend were related to distributional range dynamics of a dominant indigenous evergreen shrub <em>Rhododendron aureum</em>, which extended at the leading edge and retracted at the trailing edge. Changes in <em>R. aureum</em> distribution were probably related to spring snow cover changes. Areas with decreasing <em>R. aureum</em> cover were often located in snow patches where probably herbs and grasses encroached from low elevations and adjacent communities. Our study highlights that spring SCA derived from multi-source remote sensing imagery can be used as a proxy to explore relationship between snow cover and vegetation change in alpine ecosystems. Alpine indigenous plant species may migrate upward following the reduction of snow-dominated environments in the context of climate warming and could be threatened by encroaching plants within snow bed habitats.</span></p>


2015 ◽  
Vol 370 (1665) ◽  
pp. 20130556 ◽  
Author(s):  
Taal Levi ◽  
Felicia Keesing ◽  
Kelly Oggenfuss ◽  
Richard S. Ostfeld

The phenology of tick emergence has important implications for the transmission of tick-borne pathogens. A long lag between the emergence of tick nymphs in spring and larvae in summer should increase transmission of persistent pathogens by allowing infected nymphs to inoculate the population of naive hosts that can subsequently transmit the pathogen to larvae to complete the transmission cycle. In contrast, greater synchrony between nymphs and larvae should facilitate transmission of pathogens that do not produce long-lasting infections in hosts. Here, we use 19 years of data on blacklegged ticks attached to small-mammal hosts to quantify the relationship between climate warming and tick phenology. Warmer years through May and August were associated with a nearly three-week advance in the phenology of nymphal and larval ticks relative to colder years, with little evidence of increased synchrony. Warmer Octobers were associated with fewer larvae feeding concurrently with nymphs during the following spring. Projected warming by the 2050s is expected to advance the timing of average nymph and larva activity by 8–11 and 10–14 days, respectively. If these trends continue, climate warming should maintain or increase transmission of persistent pathogens, while it might inhibit pathogens that do not produce long-lasting infections.


2010 ◽  
Vol 23 (10) ◽  
pp. 2634-2650 ◽  
Author(s):  
Justin R. Minder

Abstract Controls on the sensitivity of mountain snowpack accumulation to climate warming (λS) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade Mountains under current and warmed climates. Both models are forced from sounding observations. The first model uses the linear theory (LT) model of orographic precipitation to predict precipitation as a function of the incoming flow characteristics and uses the sounding temperatures to estimate the elevation of the rain–snow boundary, called the melting level (ML). The second “ML model” uses only the ML from the sounding and assumptions of uniform and constant precipitation. Both models simulate increases in precipitation intensity and elevated storm MLs under climate warming. The LT model predicts a 14.8%–18.1% loss of Cascade snowfall per degree of warming, depending on the vertical structure of the warming. The loss of snowfall is significantly greater, 19.4%–22.6%, if precipitation increases are neglected. Comparing the two models shows that the predominant control on λS is the relationship between the distribution of storm MLs and the distribution of topographic area with elevation. Although increases in precipitation due to warming may act to moderate λS, the loss of snow accumulation area profoundly limits the ability of precipitation increases to maintain the snowpack under substantial climate warming (beyond 1°–2°C). Circulation changes may act to moderate or exacerbate the loss of mountain snowpack under climate change via impacts on orographic precipitation enhancement.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thomas Parr

Abstract This commentary focuses upon the relationship between two themes in the target article: the ways in which a Markov blanket may be defined and the role of precision and salience in mediating the interactions between what is internal and external to a system. These each rest upon the different perspectives we might take while “choosing” a Markov blanket.


2019 ◽  
Vol 42 ◽  
Author(s):  
Paul Benjamin Badcock ◽  
Axel Constant ◽  
Maxwell James Désormeau Ramstead

Abstract Cognitive Gadgets offers a new, convincing perspective on the origins of our distinctive cognitive faculties, coupled with a clear, innovative research program. Although we broadly endorse Heyes’ ideas, we raise some concerns about her characterisation of evolutionary psychology and the relationship between biology and culture, before discussing the potential fruits of examining cognitive gadgets through the lens of active inference.


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document