persistent pathogens
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

Science ◽  
2021 ◽  
Vol 374 (6563) ◽  
pp. 35-36
Author(s):  
Katie Hampson ◽  
Daniel Haydon

2021 ◽  
Vol 22 (18) ◽  
pp. 10059
Author(s):  
Shiqi Liu ◽  
Stanley Brul ◽  
Sebastian A. J. Zaat

Persister cells are growth-arrested subpopulations that can survive possible fatal environments and revert to wild types after stress removal. Clinically, persistent pathogens play a key role in antibiotic therapy failure, as well as chronic, recurrent, and antibiotic-resilient infections. In general, molecular and physiological research on persister cells formation and compounds against persister cells are much desired. In this study, we firstly demonstrated that the spore forming Gram-positive model organism Bacillus subtilis can be used to generate persister cells during exposure to antimicrobial compounds. Interestingly, instead of exhibiting a unified antibiotic tolerance profile, different number of persister cells and spores were quantified in various stress conditions. qPCR results also indicated that differential stress responses are related to persister formation in various environmental conditions. We propose, for the first time to the best of our knowledge, an effective method to isolate B. subtilis persister cells from a population using fluorescence-activated cell sorting (FACS), which makes analyzing persister populations feasible. Finally, we show that alpha-helical cationic antimicrobial peptides SAAP-148 and TC-19, derived from human cathelicidin LL-37 and human thrombocidin-1, respectively, have high efficiency against both B. subtilis vegetative cells and persisters, causing membrane permeability and fluidity alteration. In addition, we confirm that in contrast to persister cells, dormant B. subtilis spores are not susceptible to the antimicrobial peptides.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 103
Author(s):  
Sylvia Soldatou ◽  
Grímur Hjörleifsson Eldjárn ◽  
Andrew Ramsay ◽  
Justin J. J. van der Hooft ◽  
Alison H. Hughes ◽  
...  

Biosynthetic and chemical datasets are the two major pillars for microbial drug discovery in the omics era. Despite the advancement of analysis tools and platforms for multi-strain metabolomics and genomics, linking these information sources remains a considerable bottleneck in strain prioritisation and natural product discovery. In this study, molecular networking of the 100 metabolite extracts derived from applying the OSMAC approach to 25 Polar bacterial strains, showed growth media specificity and potential chemical novelty was suggested. Moreover, the metabolite extracts were screened for antibacterial activity and promising selective bioactivity against drug-persistent pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii was observed. Genome sequencing data were combined with metabolomics experiments in the recently developed computational approach, NPLinker, which was used to link BGC and molecular features to prioritise strains for further investigation based on biosynthetic and chemical information. Herein, we putatively identified the known metabolites ectoine and chrloramphenicol which, through NPLinker, were linked to their associated BGCs. The metabologenomics approach followed in this study can potentially be applied to any large microbial datasets for accelerating the discovery of new (bioactive) specialised metabolites.


2020 ◽  
Author(s):  
Nayan D Bhattacharyya ◽  
Claudio Counoupas ◽  
Lina Daniel ◽  
Guoliang Zhang ◽  
Stuart J Cook ◽  
...  

AbstractThe quality of T cell responses depends on the lymphocytes’ ability to undergo clonal expansion, acquire effector functions and traffic to the site of infection. Although TCR signal strength is thought to dominantly shape the T cell response, by using TCR transgenic CD4+ T cells with different pMHC binding affinity, we reveal that TCR affinity does not control Th1 effector function acquisition nor the functional output of individual effectors following mycobacterial infection. Rather, TCR affinity calibrates the rate of cell division to synchronize the distinct processes of T cell proliferation, differentiation and trafficking. By timing cell division-dependent IL-12R expression, TCR affinity controls when T cells become receptive to Th1-imprinting IL-12 signals, determining the emergence and magnitude of the Th1 effector pool. These findings reveal a distinct yet cooperative role for IL-12 and TCR signalling in Th1 differentiation and suggests that the temporal activation of clones with different TCR affinity is a major strategy to coordinate immune surveillance against persistent pathogens.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Laurisa Ankley ◽  
Sean Thomas ◽  
Andrew J. Olive

ABSTRACT Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies. However, many persistent pathogens, such as Mycobacterium tuberculosis, actively target the very host pathways activated by vaccination. These immune evasion tactics blunt the effectiveness of immunization strategies and are impeding progress to control these infections throughout the world. Therefore, it is essential that M. tuberculosis immune evasion-related pathogen virulence strategies are considered to maximize the effectiveness of potential new treatments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-presenting cells and evades effective immune clearance by the adaptive response through (i) manipulating antigen presentation, (ii) repressing T cell-activating costimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this context, we will examine the challenges that bacterial virulence strategies pose to developing new vaccines. We will then discuss new approaches that will help dissect M. tuberculosis immune evasion mechanisms and devise strategies to bypass them to promote long-term protection and prevent disease progression.


2019 ◽  
Vol 147 ◽  
Author(s):  
R. C. Stebbins ◽  
G. A. Noppert ◽  
A. E. Aiello ◽  
E. Cordoba ◽  
J. B. Ward ◽  
...  

Abstract The disproportionate burden of prevalent, persistent pathogens among disadvantaged groups may contribute to socioeconomic and racial/ethnic disparities in long-term health. We assessed if the social patterning of pathogen burden changed over 16 years in a U.S.-representative sample. Data came from 17 660 National Health and Nutrition Examination Survey participants. Pathogen burden was quantified by summing the number of positive serologies for cytomegalovirus, herpes simplex virus-1, HSV-2, human papillomavirus and Toxoplasma gondii and dividing by the number of pathogens tested, giving a percent-seropositive for each participant. We examined sex- and age-adjusted mean pathogen burdens from 1999–2014, stratified by race/ethnicity and SES (poverty-to-income ratio (PIR); educational attainment). Those with a PIR < 1.3 had a mean pathogen burden 1.4–1.8 times those with a PIR > 3.5, with no change over time. Educational disparities were even greater and showed some evidence of increasing over time, with the mean pathogen burden among those with less than a high school education approximately twice that of those who completed more than high school. Non-Hispanic Black, Mexican American and other Hispanic participants had a mean pathogen burden 1.3–1.9 times non-Hispanic Whites. We demonstrate that socioeconomic and racial/ethnic disparities in pathogen burden have persisted across 16 years, with little evidence that the gap is closing.


2018 ◽  
Vol 2 (suppl_1) ◽  
pp. 506-506
Author(s):  
R Stebbins ◽  
G Noppert ◽  
Y Yang ◽  
M Haan ◽  
A Aiello

2018 ◽  
Vol 74 (5) ◽  
pp. 634-641 ◽  
Author(s):  
Amanda M Simanek ◽  
Cheng Zheng ◽  
Robert Yolken ◽  
Mary Haan ◽  
Allison E Aiello

Abstract Depression is estimated to affect more than 6.5 million Americans 65 years of age and older and compared with non-Latino whites older U.S. Latinos have a greater incidence and severity of depression, warranting further investigation of novel risk factors for depression onset among this population. We used data on 771/1,789 individuals ≥60 years of age from the Sacramento Area Latino Study on Aging (1998–2008) who were tested for cytomegalovirus (CMV), herpes simplex virus, varicella zoster, Helicobacter pylori, Toxoplasma gondii, and C-reactive protein (CRP) and interleukin-6 (IL-6) level. Among those without elevated depressive symptoms at baseline, we examined the association between each pathogen, inflammatory markers and incident depression over up to nearly 10 years of follow-up using discrete-time logistic regression. We found that only CMV seropositivity was statistically significantly associated with increased odds of incident depression (odds ratio [OR]: 1.38, 95% confidence interval [CI]: 1.00–1.90) in the total sample as well as among women only (OR: 1.70, 95% CI: 1.01–2.86). These associations were not mediated by CRP or IL-6 levels. Our findings suggest that CMV seropositivity may serve as an important risk factor for the onset of depression among older U.S. Latinos, but act outside of inflammatory pathways.


Sign in / Sign up

Export Citation Format

Share Document