Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation

2017 ◽  
Vol 100 ◽  
pp. 371-379 ◽  
Author(s):  
Pham Huu Ha Giang ◽  
Peter O. Van Impe ◽  
William F. Van Impe ◽  
Patrick Menge ◽  
Wim Haegeman
Author(s):  
Jinquan Shi ◽  
Yang Xiao ◽  
Jian Hu ◽  
Huanran Wu ◽  
Hanlong Liu ◽  
...  

In this study, the small strain shear modulus of a calcareous sand was investigated by conducting bender element tests on both horizontal and vertical planes. The effects of sample preparation method, stress path and stress history on the developing of void ratio, the parameters in the modified Hardin equation and the stiffness anisotropy were examined. The test results show that the moist tamping samples have the least void ratio variation among the five samples. The void ratio recovery in σ'h = 100 kPa tests is higher than that in the σ'v = 100 kPa tests. The samples prepared in dry state have lower stiffness than those prepared in moisture state, which is not influenced by the anisotropic stress state. The stiffness anisotropy induced by the sample preparation method is significant under anisotropic consolidation. In σ'h = 100 kPa tests, the stiffness ratios at the end of the unloading stage are lower than the initial values at the loading stage, which is not found in the σ'v = 100 kPa tests, meaning that the stress history and stress path could affect the stiffness anisotropy and cover the impact of fabric anisotropy.


2021 ◽  
Vol 21 (5) ◽  
pp. 04021063
Author(s):  
Fangtong Wang ◽  
Dianqing Li ◽  
Wenqi Du ◽  
Chia Zarei ◽  
Yong Liu

2020 ◽  
Vol 146 (12) ◽  
pp. 04020136
Author(s):  
Farshid Vahedifard ◽  
Sannith Kumar Thota ◽  
Toan Duc Cao ◽  
Radhavi Abeysiridara Samarakoon ◽  
John S. McCartney

2013 ◽  
Author(s):  
Tom Lunne ◽  
Patrick Kelleher ◽  
Meysam Banimahd ◽  
Don Degroot ◽  
Hoang Quang Nguyen ◽  
...  

2008 ◽  
Vol 45 (10) ◽  
pp. 1426-1438 ◽  
Author(s):  
Jun-Ung Youn ◽  
Yun-Wook Choo ◽  
Dong-Soo Kim

The bender element method is an experimental technique used to determine the small-strain shear modulus (Gmax) of a soil by measuring the velocity of shear wave propagation through a sample. Bender elements have been applied as versatile transducers to measure the Gmax of wet and dry soils in various laboratory apparatuses. However, certain aspects of the bender element method have yet to be clearly specified because of uncertainties in determining travel time. In this paper, the bender element (BE), resonant column (RC), and torsional shear (TS) tests were performed on the same specimens using the modified Stokoe-type RC and TS testing equipment. Two clean sands, Toyoura and silica sands, were tested at various densities and mean effective stresses under dry and saturated conditions. Based on the test results, methods of determining travel time in BE tests were evaluated by comparing the results of RC, TS, and BE tests. Also, methods to evaluate Gmax of saturated sands from the shear-wave velocity (Vs) obtained by RC and BE tests were investigated by comparing the three sets of test results. Biot’s theory on frequency dependence of shear-wave velocity was adopted to consider dispersion of a shear wave in saturated conditions. The results of this study suggest that the total mass density, which is commonly used to convert Gmax from the measured Vs in saturated soils, should not be used to convert Vs to Gmax when the frequency of excitation is 10% greater than the characteristic frequency (fc) of the soil.


Sign in / Sign up

Export Citation Format

Share Document