Depth-wise attenuation mechanism of seismic waves in the Andaman region

2021 ◽  
Vol 151 ◽  
pp. 107000
Author(s):  
Abhisek Dutta ◽  
Rahul Biswas ◽  
Chandrani Singh ◽  
M. Ravi Kumar ◽  
Niptika Jana ◽  
...  
Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. E159-E163 ◽  
Author(s):  
Sebastian R. Zanoth ◽  
Erik H. Saenger ◽  
Oliver S. Krüger ◽  
Serge A. Shapiro

The leaky mode is a possible attenuation mechanism of seismic waves propagating along lamination in gas-hydrate-bearing sediment layers. This horizontal propagation attenuation mechanism occurs when a high-velocity layer is embedded in a low-velocity zone. This is a typical situation for gas hydrate occurrences. To quantify this attenuation mechanism, a 2D digital rock model based on the crosswell data of the Mallik 2002 Gas Hydrate Production Research Well Program is used. For simplicity, our elastic simulations exclude attenuation mechanisms like scattering loss or intrinsic absorption. We demonstrate that the leaky mode is a significant horizontal attenuation mechanism that cannot be neglected. The effective attenuation of gas-hydrate-bearing sediments is a combination of intrinsic and scattering attenuation by small-scale heterogeneties and the leaky mode.


Geophysics ◽  
1979 ◽  
Vol 44 (4) ◽  
pp. 691-711 ◽  
Author(s):  
D. H. Johnston ◽  
M. N. Toksöz ◽  
A. Timur

Theoretical models based on several hypothesized attenuation mechanisms are discussed in relation to published data on the effects of pressure and fluid saturation on attenuation. These mechanisms include friction, fluid flow, viscous relaxation, and scattering. The application of these models to the ultrasonic data of Toksöz et al (1979, this issue) indicates that friction on thin cracks and grain boundaries is the dominant attenuation mechanism for consolidated rocks under most conditions in the earth’s upper crust. Increasing pressure decreases the number of cracks contributing to attenuation by friction, thus decreasing the attenuation. Water wetting of cracks and pores reduces the friction coefficient, facilitating sliding and thus increasing the attenuation. In saturated rocks, fluid flow plays a secondary role relative to friction. At ultrasonic frequencies in porous and permeable rocks, however, Biot‐type flow may be important at moderately high pressures. “Squirting” type flow of pore fluids from cracks and thin pores to larger pores may be a viable mechanism for some rocks at lower frequencies. The extrapolation of ultrasonic data to seismic or sonic frequencies by theoretical models involves some assumptions, verification of which requires data at lower frequencies.


2006 ◽  
Vol 167 (1) ◽  
pp. 354-360 ◽  
Author(s):  
S. Mukhopadhyay ◽  
C. Tyagi ◽  
S. S. Rai

2011 ◽  
Vol 8 (1) ◽  
pp. 275-286
Author(s):  
R.G. Yakupov ◽  
D.M. Zaripov

The stress-deformed state of the underground main pipeline under the action of seismic waves of an earthquake is considered. The generalized functions of seismic impulses are constructed. The pipeline motion equations are solved with used Laplace transformation by the time. Tensions and deformations of the pipeline have been determined. A numerical example is reviewed. Diagrams of change of the tension depending on earthquake force are provided in earthquake-points.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hengxin Ren ◽  
Ling Zeng ◽  
Yao-Chong Sun ◽  
Ken’ichi Yamazaki ◽  
Qinghua Huang ◽  
...  

AbstractIn this paper, numerical computations are carried out to investigate the seismo-electromagnetic signals arising from the motional induction effect due to an earthquake source embedded in 3-D multi-layered media. First, our numerical computation approach that combines discrete wavenumber method, peak-trough averaging method, and point source stacking method is introduced in detail. The peak-trough averaging method helps overcome the slow convergence problem, which occurs when the source–receiver depth difference is small, allowing us to consider any focus depth. The point source stacking method is used to deal with a finite fault. Later, an excellent agreement between our method and the curvilinear grid finite-difference method for the seismic wave solutions is found, which to a certain degree verifies the validity of our method. Thereafter, numerical computation results of an air–solid two-layer model show that both a receiver below and another one above the ground surface will record electromagnetic (EM) signals showing up at the same time as seismic waves, that is, the so-called coseismic EM signals. These results suggest that the in-air coseismic magnetic signals reported previously, which were recorded by induction coils hung on trees, can be explained by the motional induction effect or maybe other seismo-electromagnetic coupling mechanisms. Further investigations of wave-field snapshots and theoretical analysis suggest that the seismic-to-EM conversion caused by the motional induction effect will give birth to evanescent EM waves when seismic waves arrive at an interface with an incident angle greater than the critical angle θc = arcsin(Vsei/Vem), where Vsei and Vem are seismic wave velocity and EM wave velocity, respectively. The computed EM signals in air are found to have an excellent agreement with the theoretically predicted amplitude decay characteristic for a single frequency and single wavenumber. The evanescent EM waves originating from a subsurface interface of conductivity contrast will contribute to the coseismic EM signals. Thus, the conductivity at depth will affect the coseismic EM signals recorded nearby the ground surface. Finally, a fault rupture spreading to the ground surface, an unexamined case in previous numerical computations of seismo-electromagnetic signals, is considered. The computation results once again indicate the motional induction effect can contribute to the coseismic EM signals.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


Sign in / Sign up

Export Citation Format

Share Document