Next Generation Sequencing and Multi-Gene Panel Testing: Implications for the Oncology Nurse

2017 ◽  
Vol 33 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Patricia A. Kelly
2019 ◽  
Vol 235-236 ◽  
pp. 77-83
Author(s):  
Maureen E. Mork ◽  
Andrea Rodriguez ◽  
Sarah A. Bannon ◽  
Patrick M. Lynch ◽  
Miguel A. Rodriguez-Bigas ◽  
...  

2021 ◽  
Author(s):  
Masayo Ogiri ◽  
Ryo Seishima ◽  
Kohei Nakamura ◽  
Eriko Aimono ◽  
Shimpei Matsui ◽  
...  

Abstract Purpose: This study aimed to evaluate the significance of Next-generation sequencing (NGS)-based gene panel testing in resectable colorectal cancers (CRC)s by analyzing real-world data collected prospectively from patients. Methods: Patients with CRC who underwent surgery from July 2018 to February 2020 at our institution were included, and correlations between various NGS data and clinicopathological findings were evaluated. Results: Overall, 107 patients were included in this study. The tumor stage was I in 28 cases (26.2%), II in 40 cases (37.4%), III in 32 cases (29.9%), and IV in 7 cases (6.5%). Actionable gene alterations were found in 97.2% of the cases. Co-alteration analysis suggested that either TP53- or APC-related alterations were more frequently found in early-stage tumors (stage I). The copy number alteration count was significantly lower in right side colon tumors than in tumors in other locations (P < 0.05). Homologous recombination deficiency (HRD) was more often identified in stage IV tumors than in stage I or II tumors (P < 0.05). Moreover, high HRD status was suggested to be useful for identifying high-risk stage II tumors (P < 0.05). Conclusion: In this study, real-world NGS data represented the biological features of CRCs. HRD was identified as a useful result of gene panel testing with novel utility in clinical practice.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 5588-5588
Author(s):  
Jing-Yi Chern ◽  
Nigel Madden ◽  
Jessica Lee ◽  
Deanna Gerber ◽  
Anna Cantor ◽  
...  

5588 Background: Lynch syndrome (LS) accounts for 2-6% of all endometrial cancers (EC), and women with a germline mutation in the mismatch repair (MMR) genes ( MLH1, MSH2, MSH6, and PMS2) have an average lifetime risk of EC of 40%. As with breast and ovarian cancer syndromes, there are likely other genes implicated in the development of EC outside of the MMR genes. Multi-gene panel testing (MGPT) with next generation sequencing (NGS) allows for simultaneous analysis of numerous genes.We sought to evaluate the characteristics and incidence of gene mutations in women with newly diagnosed EC. Methods: We conducted a review of EC patients diagnosed from 6/2013 to 12/2016 who had MGPT at our institution. Demographics, family history, genetic testing results, and tumor characteristics were collected and analyzed using χ2 tests. Results: Of the 129 patients who had MGPT, 13 (10%) had a mutation and only 5 (38%) were in patients < 50 years old. The median age of EC diagnosis is 55 (31-100) years and median BMI = 27.5 (21-59). Majority were stage 1, 76 (59%) and grade 1, 50 (39%). Patients with additional primary cancers, breast or colon were not more likely to have a mutation. However, patients with a family history of gynecologic cancer were more likely to have a mutation identified, 10 (77%) mutation vs no mutation 34 (29%), p = 0.003. Among all patients tested, 8 (6%) had a mutation in LS genes, and 6 (5%) had mutations in other genes ( BRCA1, BRCA2, RAD51C, MUTYH, CHEK2); 1 (0.8%) had both MSH2 and CHEK2 mutation. Three patients had prior testing for breast cancer; 2 were found to have a BRCA1/ 2 mutation and the other was on Tamoxifen and BRCA negative. IHC was performed on 7 of 13 patients, and 5 (71%) had a loss of MMR protein expression. Variants of uncertain significance were noted in 35/129 (27%) of patients tested. Conclusions: Majority of EC patients with a mutation detected with NGS were > age 50. We identified additional new mutations in non-LS genes including, CHEK2, RAD51C, and MUYTH with MGPT. These accounted for 29% of the mutations and would have not been not detected using classic LS gene testing. These genes are implicated in breast, ovary or colon cancer. MGPT testing is feasible and useful in identifying additional actionable gene mutations.


2020 ◽  
Vol 97 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Ruhong Cheng ◽  
Jianying Liang ◽  
Yue Li ◽  
Jia Zhang ◽  
Cheng Ni ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1223-1223
Author(s):  
J. R. Marques Soares ◽  
M. Antolin Mate ◽  
E. Garcia Arumi ◽  
E. Tizzano Ferrari ◽  
S. Bujan Rivas

Background:Systemic autoinflammatory diseases (sAID) are a group of conditions with recurrent episodes of inflammation in absence of infection or autoimmune response. Its physiopathology mainly lies on mono/poligenic mutations involving genes related to the innate immune system response. Next Generation Sequencing (NGS) platformss have been a big step forward on sAID diagnosis, although a clinical and genetic correlation is still needed.Objectives:To review the sAID related gene panel variants identified using NGS sAID gene panel on a cohort of adult patients screened for sAID from a referral third-level hospital.To correlate genetic and clinical findings for sAID related variants identified in order to the clinical suspicion diagnosis of sAID.Methods:A retrospective review of a cohort of adult (≥ 16 yo) patients with available NGS sAID related gene panel (MiSeq Illumina sequencing platform including intron and exon variants from up to 17 sAID genes, with coverage depth > x100) among 2014 and 2019 was performed.Demographic, clinical and genetic data were collected in a database.Genetic variants were classified according to the American College of Medical Genetics/Association for Molecular Pathology classification as benign/likely benign/variable of unknown significance (VUS)/likely pathogenic/pathogenic. In case of polymorphisms or lack of genetic data, the variants were named as unclassified.A description of the cohort and an analysis of the correlation assessment between clinical data and genetic findings were performed.Results:246 out of 299 (82%) patients with NGS sAID gene panel had clinical data available. 170/246 (69%) were adult patients. The medium age was 48 yo, and the M/F ratio was 2.46. 87/170 (51%) adult patients presented 122 variants involving sAID genes (60/87 patients with a single variant). All the variants out of 7 seven were heterozygous variants.Variants were classified according to ACMG/AMP as follow: pathogenic/probably pathogenic: 22/122 (18%), unknown significance: 74/122 (60.6%), benign/probably benign: 6/122 (4.91%). 20/122 (16.4%) were unclassified variants or polymorphisms.The most frequent variants identified involved MEFV (54/122), NOD2/CARD15 (18/122) and TNFRSF1A (17/122 including 12 p.Arg121Gln variants) genes.37/122 (30%) variants correlated with the clinical picture in 33 patients, allowing to confirm the suspected diagnosis. Among the 122 variants, 7 not previously communicated variants were identified.No somatic variants were found.Conclusion:NGS sAID related gene panel is a useful tool for sAID diagnosis. In this cohort of 170 adult patients from a referral third-level hospital, genetic tests identified sAID related variants in almost half of them.20% of patients who underwent genetic NGS sAID related gene panel studies were finally diagnosed with sAID.The identification of a genetic variant (even pathogenic / likely pathogenic variant) is not diagnostic for sAID if there is not a suggestive clinical picture.Despite genetic findings, a careful evaluation of clinical – genetic correlation is needed to confirm the suspicion diagnosis, especially for low penetrance variants like TNFRSF1A p. Arg121Gln.References:Diagnostic utility of a targeted next-generation sequencing gene panel in the clinical suspicion of systemic autoinflammatory diseases: a multi-center study. Karacan I, Balamir A, Uğurlu S, et al. . Rheumatol Int. 2019 May;39(5):911-919. doi: 10.1007/s00296-019-04252-5. Epub 2019 Feb 19.Disclosure of Interests:None declared


2018 ◽  
Vol 110 (1) ◽  
pp. 6-15 ◽  
Author(s):  
Masayuki Nagahashi ◽  
Yoshifumi Shimada ◽  
Hiroshi Ichikawa ◽  
Hitoshi Kameyama ◽  
Kazuaki Takabe ◽  
...  

2017 ◽  
Vol 142 (3) ◽  
pp. 353-357 ◽  
Author(s):  
Mitra Mehrad ◽  
Somak Roy ◽  
Humberto Trejo Bittar ◽  
Sanja Dacic

Context.— Different testing algorithms and platforms for EGFR mutations and ALK rearrangements in advanced-stage lung adenocarcinoma exist. The multistep approach with single-gene assays has been challenged by more efficient next-generation sequencing (NGS) of a large number of gene alterations. The main criticism of the NGS approach is the detection of genomic alterations of uncertain significance. Objective.— To determine the best testing algorithm for patients with lung cancer in our clinical practice. Design.— Two testing approaches for metastatic lung adenocarcinoma were offered between 2012–2015. One approach was reflex testing for an 8-gene panel composed of DNA Sanger sequencing for EGFR, KRAS, PIK3CA, and BRAF and fluorescence in situ hybridization for ALK, ROS1, MET, and RET. At the oncologist's request, a subset of tumors tested by the 8-gene panel was subjected to a 50-gene Ion AmpliSeq Cancer Panel. Results.— Of 1200 non–small cell lung carcinomas (NSCLCs), 57 including 46 adenocarcinomas and NSCLCs, not otherwise specified; 7 squamous cell carcinomas (SCCs); and 4 large cell neuroendocrine carcinomas (LCNECs) were subjected to Ion AmpliSeq Cancer Panel. Ion AmpliSeq Cancer Panel detected 9 potentially actionable variants in 29 adenocarcinomas that were wild type by the 8-gene panel testing (9 of 29, 31.0%) in the following genes: ERBB2 (3 of 29, 10.3%), STK11 (2 of 29, 6.8%), PTEN (2 of 29, 6.8%), FBXW7 (1 of 29, 3.4%), and BRAF G469A (1 of 29, 3.4%). Four SCCs and 2 LCNECs showed investigational genomic alterations. Conclusions.— The NGS approach would result in the identification of a significant number of actionable gene alterations, increasing the therapeutic options for patients with advanced NSCLCs.


Sign in / Sign up

Export Citation Format

Share Document