Andreev bound state in a superconducting double barrier junction: The role of anisotropic dx2−y2-wave pairing potential

2012 ◽  
Vol 152 (24) ◽  
pp. 2133-2137 ◽  
Author(s):  
Shuanwen Jia ◽  
Baolin Ma ◽  
Ke-Wei Wei ◽  
Yanling Yang ◽  
Chunxu Bai
2021 ◽  
Author(s):  
Janelle Chuah ◽  
Tifffany Thibaudeau ◽  
David Smith

Abstract Impairment of proteasomal function has been implicated in neurodegenerative diseases, justifying the need to understand how the proteasome is activated for protein degradation. Here, using biochemical and structural (cryo-EM) strategies in both archaeal and mammalian proteasomes, we further determine the HbYX(-motif)-dependent mechanism of proteasomal activation used by multiple proteasome-activating complexes including the 19S Particle. We identify multiple proteasome α subunit residues involved in HbYX-dependent activation, a point mutation that activates the proteasome by partially mimicking a HbYX-bound state, and conformational changes involved in gate-opening with a 2.0A structure. Through an iterative process of peptide synthesis, we successfully design a HbYX-like dipeptide mimetic as a robust tool to elucidate how the motif autonomously activates the proteasome. The mimetic induces near complete gate-opening at saturating concentration, activating mammalian proteasomal degradation of peptides and proteins. Findings using our peptide mimetic suggest the HbYX-dependent mechanism requires cooperative binding in at least two intersubunit pockets of the α ring. Collectively, the results presented here unambiguously demonstrate the lone role of the HbYX tyrosine in the allosteric mechanism of proteasome activation and offer proof of concept for the robust potential of HbYX-like small molecules to activate the proteasome.


2008 ◽  
Vol 48 (9-10) ◽  
pp. 670-685 ◽  
Author(s):  
W. Ebeling ◽  
R. Redmer ◽  
H. Reinholz ◽  
G. Röpke

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Autti ◽  
S. L. Ahlstrom ◽  
R. P. Haley ◽  
A. Jennings ◽  
G. R. Pickett ◽  
...  

Abstract The ground state of a fermionic condensate is well protected against perturbations in the presence of an isotropic gap. Regions of gap suppression, surfaces and vortex cores which host Andreev-bound states, seemingly lift that strict protection. Here we show that in superfluid 3He the role of bound states is more subtle: when a macroscopic object moves in the superfluid at velocities exceeding the Landau critical velocity, little to no bulk pair breaking takes place, while the damping observed originates from the bound states covering the moving object. We identify two separate timescales that govern the bound state dynamics, one of them much longer than theoretically anticipated, and show that the bound states do not interact with bulk excitations.


Sign in / Sign up

Export Citation Format

Share Document