Thermoelectric generation device based on p-type Bi0.4Sb1.6Te3 and n-type Bi2Se0.6Te2.4 bulk materials prepared by solid state microwave synthesis

2013 ◽  
Vol 166 ◽  
pp. 44-49 ◽  
Author(s):  
A. Kadhim ◽  
A. Hmood ◽  
H. Abu Hassan
2012 ◽  
Vol 501 ◽  
pp. 126-128 ◽  
Author(s):  
Arej Kadhim ◽  
Arshad Hmood ◽  
Abu Hassan Haslan

The thermoelectric materials based on p-type Bi2Se3xTe3 (1-x) bulk products and dispersed with x compositions of Se (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were fabricated using standard solid-state microwave synthesis procedures. The products were characterized by X-ray diffraction (XRD). The XRD characterizations revealed that these products are pure Bi2Te3 and Bi2Se3 with uniform structures. The electrical properties of the Bi2Te3, Bi2Se3 and Bi2Se3xTe3 (1-x) samples were measured in the temperature range of 303–523 K. The highest value of the Seebeck coefficient was 176.3 μV/ K for the Bi2Se0.6Te2.4 sample, but only 149.5 and 87.4 μV/K for the Bi2Te3 and Bi2Se3 samples, respectively.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340008 ◽  
Author(s):  
DALE HITCHCOCK ◽  
YEN-LIANG LIU ◽  
YUFEI LIU ◽  
TERRY M. TRITT ◽  
JIAN HE ◽  
...  

Over the past decade the widely used p-type ( Bi 2-x Sb x) Te 3 bulk thermoelectric materials have been subject to various nanostructuring processes for higher thermoelectric performance. However, these nanostructuring processing were conducted on compositions optimized for bulk materials (x ~ 1.52–1.55). This leads to the question of whether the optimal composition for bulk materials is the same for their nanoscale counterparts. In this work we hydrothermally grew Bi 2-x Sb x Te 3 nanopowders (nominally, x = 1.46, 1.48, 1.52 and 1.55) and measured their thermoelectric properties on cold-pressed vacuum-sintered pellets (74–78% of the theoretical density) below 300 K. The measurements were conducted 18 months apart to probe the aging phenomena, with the samples stored in ambient conditions. We have found that (i) the peak of thermopower shifts to lower temperatures upon nanostructuring but it shifts back to higher temperatures upon aging; (ii) the electrical conductivity degrades by a factor of 1.5–2.3 upon aging while the temperature dependence is largely retained; and (iii) the ZT of freshly made samples is sensitive to the x value, a maximum ZT ~ 1.25(~ 0.62) at ~ 270 K (~ 255 K) was attained in the freshly made sample x = 1.55(x = 1.46), respectively; while the ZT of aged samples is significantly lowered by a factor of 2–4 but lesser x-dependent. These observations have been discussed in the context of charge buildup and compensation at grain boundaries.


Langmuir ◽  
2014 ◽  
Vol 30 (8) ◽  
pp. 2230-2240 ◽  
Author(s):  
Natalie P. Herring ◽  
Leela S. Panchakarla ◽  
M. Samy El-Shall

CrystEngComm ◽  
2017 ◽  
Vol 19 (30) ◽  
pp. 4294-4303 ◽  
Author(s):  
Yanfeng Xia ◽  
Zhe Qiang ◽  
Byeongdu Lee ◽  
Matthew L. Becker ◽  
Bryan D. Vogt

Microwave calcination of ordered micelle templated manganese carbonate films leads to highly crystalline, ordered mesoporous manganese oxide, while similar temperatures in a furnace lead to disordered, amorphous manganese oxide.


2016 ◽  
Vol 121 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Trang T. T. Pham ◽  
Sudip K. Saha ◽  
David Provost ◽  
Yoann Farré ◽  
Mahfoudh Raissi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document