Improvement of sensing performances of zirconia-based total NOx sensor by attachment of oxidation-catalyst electrode

2004 ◽  
Vol 175 (1-4) ◽  
pp. 503-506 ◽  
Author(s):  
T ONO
2003 ◽  
Vol 71 (6) ◽  
pp. 405-407 ◽  
Author(s):  
Takashi ONO ◽  
Masaharu HASEI ◽  
Akira KUNIMOTO ◽  
Norio MIURA

Nanoscale ◽  
2017 ◽  
Vol 9 (34) ◽  
pp. 12343-12347 ◽  
Author(s):  
Guilei Zhu ◽  
Lin Yang ◽  
Rong Zhang ◽  
Fengli Qu ◽  
Zhiang Liu ◽  
...  

A nanoporous crystalline CoB2O4 nanowire array (CoB2O4/TM) behaves as a superior water oxidation catalyst electrode, requiring an overpotential of 446 mV to deliver 10 mA cm−2 in 0.1 M K-Bi (pH = 9.2).


1981 ◽  
Vol 46 (11) ◽  
pp. 2657-2662
Author(s):  
Zdeněk Prokop ◽  
Karel Setínek

Some additional data about properties and applicability of a styrene-divinylbenzene polymer catalyst containing acidic and redox functional groups are reported. It is shown that the catalysts of this type can be prepared reproducibly and exhibit catalytic properties comparable to the properties of noble metal catalysts.


1981 ◽  
Vol 46 (5) ◽  
pp. 1237-1247
Author(s):  
Zdeněk Prokop ◽  
Karel Setínek

The catalyst containing redox sites in addition to acid functional groups was prepared by sulphonation of a macroporous chloromethylated styrene-divinylbenzene copolymer with concentrated sulphuric acid at elevated temperatures. Its activity was tested for the oxidation of 2-propanol by molecular oxygen at 120 °C and was found to be comparable to that of the iridium on carbon catalyst.Neutralisation of acid functional groups by alkali metal led to proportional decrease in the oxidation activity. The results of EPR spectroscopic study of these catalysts show that the redox properties of the polymer are caused by carbon clusters which are capable of electron exchange.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sreeharsh Nair ◽  
Mayank Mittal

AbstractThe advent of stricter emission standards has increased the importance of aftertreatment devices and the role of numerical simulations in the evolution of better catalytic converters in order to satisfy these emission regulations. In this paper, a 2-D numerical simulation of a single channel of the monolith catalytic converter is presented by using detailed surface reaction kinetics aiming to investigate the chemical behaviour inside the converter. The model has been developed to study the conversion of carbon monoxide (CO) in the presence of propene (C3H6) for low-temperature combustion (LTC) engine application. The inhibition effect of C3H6 over a wide range of CO inlet concentrations is investigated. Considering both low and high levels of CO concentration at the inlet, the 2-D model predicted better results than their corresponding 1-D counterparts when compared with the experimental data from literature. It was also observed that C3H6 inhibition at high temperatures was significant, particularly for high concentrations of CO compared to low concentrations of CO at the inlet.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 330
Author(s):  
Je-Deok Kim ◽  
Akihiro Ohira

Porous IrO2/Ti/IrO2 catalyst electrodes were obtained by coating IrO2 on both sides of three types of porous Ti powder sheets (sample 1, sample 2, and sample 3) using different surface treatment methods, and a hydrogen evolution catalyst electrode was obtained by coating Pt/C on carbon gas diffusion layers. A Nafion115 membrane was used as an electrolyte for the membrane electrode assemblies (MEA). Water electrolysis was investigated at cell temperatures up to 150 °C, and the electrical characteristics of the three types of porous IrO2/Ti/IrO2 catalyst electrodes were investigated. The sheet resistance of sample 1 was higher than those of samples 2 and 3, although during water electrolysis, a high current density was observed due to the nanostructure of the IrO2 catalyst. In addition, the structural stabilities of Nafion and Aquivion membranes up to 150 °C were investigated by using small angle X-ray scattering (SAXS). The polymer structures of Nafion and Aquivion membranes were stable up to 80 °C, whereas the crystalline domains grew significantly above 120 °C. In other words, the initial polymer structure did not recover after the sample was heated above the glass transition temperature.


Sign in / Sign up

Export Citation Format

Share Document