scholarly journals TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas

2015 ◽  
Vol 4 (6) ◽  
pp. 967-974 ◽  
Author(s):  
Yishai Avior ◽  
Juan Carlos Biancotti ◽  
Nissim Benvenisty
2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2015 ◽  
Vol 210 (7) ◽  
pp. 1257-1268 ◽  
Author(s):  
Sundari Chetty ◽  
Elise N. Engquist ◽  
Elie Mehanna ◽  
Kathy O. Lui ◽  
Alexander M. Tsankov ◽  
...  

Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48659 ◽  
Author(s):  
Marisa Ojala ◽  
Kristiina Rajala ◽  
Mari Pekkanen-Mattila ◽  
Marinka Miettinen ◽  
Heini Huhtala ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 710 ◽  
Author(s):  
Manale Karam ◽  
Ihab Younis ◽  
Noor R. Elareer ◽  
Sara Nasser ◽  
Essam M. Abdelalim

Human pluripotent stem cells (hPSCs) can provide unlimited supply for mesenchymal stem cells (MSCs) and adipocytes that can be used for therapeutic applications. Here we developed a simple and highly efficient all-trans-retinoic acid (RA)-based method for generating an off-the-shelf and scalable number of human pluripotent stem cell (hPSC)-derived MSCs with enhanced adipogenic potential. We showed that short exposure of multiple hPSC lines (hESCs/hiPSCs) to 10 μM RA dramatically enhances embryoid body (EB) formation through regulation of genes activating signaling pathways associated with cell proliferation, survival and adhesion, among others. Disruption of cell adhesion induced the subsequent differentiation of the highly expanded RA-derived EB-forming cells into a pure population of multipotent MSCs (up to 1542-fold increase in comparison to RA-untreated counterparts). Interestingly, the RA-derived MSCs displayed enhanced differentiation potential into adipocytes. Thus, these findings present a novel RA-based approach for providing an unlimited source of MSCs and adipocytes that can be used for regenerative medicine, drug screening and disease modeling applications.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2858
Author(s):  
German Atzin Mora-Roldan ◽  
Dalia Ramirez-Ramirez ◽  
Rosana Pelayo ◽  
Karlen Gazarian

Background. In vitro methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) are a matter of priority for the in-depth research into the mechanisms of early embryogenesis. So-far, published results regarding the generation of hematopoietic cells come from studies using either 2D or 3D culture formats, hence, it is difficult to discern their particular contribution to the development of the concept of a unique in vitro model in close resemblance to in vivo hematopoiesis. Aim of the study. To assess using the same culture conditions and the same time course, the potential of each of these two formats to support differentiation of human pluripotent stem cells to primitive hematopoiesis without exogenous activation of Wnt signaling. Methods. We used in parallel 2D and 3D formats, the same culture environment and assay methods (flow cytometry, IF, qPCR) to investigate stages of commitment and specification of mesodermal, and hemogenic endothelial cells to CD34 hematopoietic cells and evaluated their clonogenic capacity in a CFU system. Results. We show an adequate formation of mesoderm, an efficient commitment to hemogenic endothelium, a higher number of CD34 hematopoietic cells, and colony-forming capacity potential only in the 3D format-supported differentiation. Conclusions. This study shows that the 3D but not the 2D format ensures the induction and realization by endogenous mechanisms of human pluripotent stem cells’ intrinsic differentiation program to primitive hematopoietic cells. We propose that the 3D format provides an adequate level of upregulation of the endogenous Wnt/β-catenin signaling.


2020 ◽  
Vol 9 (3) ◽  
pp. 669 ◽  
Author(s):  
Kyeongseok Kim ◽  
Ahmed Abdal Dayem ◽  
Minchan Gil ◽  
Gwang-Mo Yang ◽  
Soo Bin Lee ◽  
...  

Efficient maintenance of the undifferentiated status of human pluripotent stem cells (hiPSCs) is crucial for producing cells with improved proliferation, survival and differentiation, which can be successfully used for stem cell research and therapy. Here, we generated iPSCs from healthy donor peripheral blood mononuclear cells (PBMCs) and analyzed the proliferation and differentiation capacities of the generated iPSCs using single cell NGS-based 24-chromosome aneuploidy screening and RNA sequencing. In addition, we screened various natural compounds for molecules that could enhance the proliferation and differentiation potential of hiPSCs. Among the tested compounds, 3,2′-dihydroxyflavone (3,2′-DHF) significantly increased cell proliferation and expression of naïve stemness markers and decreased the dissociation-induced apoptosis of hiPSCs. Of note, 3,2′-DHF-treated hiPSCs showed upregulation of intracellular glutathione (GSH) and an increase in the percentage of GSH-high cells in an analysis with a FreSHtracer system. Interestingly, culture of the 3,2′-DHF-treated hiPSCs in differentiation media enhanced their mesodermal differentiation and differentiation into CD34+ CD45+ hematopoietic progenitor cells (HPC) and natural killer cells (NK) cells. Taken together, our results demonstrate that the natural compound 3,2′-DHF can improve the proliferation and differentiation capacities of hiPSCs and increase the efficiency of HPC and NK cell production from hiPSCs.


2020 ◽  
Author(s):  
Manale Karam ◽  
Ihab Younis ◽  
Essam M. Abdelalim

AbstractHuman pluripotent stem cells (hPSCs) can provide unlimited supply for mesenchymal stem cells (MSCs) and adipocytes that can be used for therapeutic applications. Here we developed a simple and highly efficient All-trans-retinoic acid (RA)-based method for generating an off-the-shelf and scalable number of human pluripotent stem cell (hPSC)-derived MSCs with enhanced adipogenic potential. We showed that short exposure of multiple hPSC lines (hESCs/ hiPSCs) to a high RA concentration (10 μM) dramatically enhances embryoid body (EB) formation through regulation of genes activating signaling pathways associated with cell proliferation, survival and adhesion, among others. Disruption of cell adhesion induced the subsequent differentiation of the highly expanded RA-derived EB-forming cells into a pure population of multipotent MSCs (up to 1542-fold increase in comparison to RA-untreated counterparts). Interestingly, the RA-derived MSCs displayed enhanced differentiation potential into adipocytes. Thus, these findings present a novel RA-based approach for providing an unlimited source of MSCs and adipocytes that can be used for regenerative medicine, drug screening, and disease modeling applications.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Nathan Kumar ◽  
Jenna Richter ◽  
Josh Cutts ◽  
Kevin T Bush ◽  
Cleber Trujillo ◽  
...  

The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate.


Sign in / Sign up

Export Citation Format

Share Document