Sweet corn significantly increases nitrogen retention and reduces nitrogen leaching as summer catch crop in protected vegetable production systems

2018 ◽  
Vol 180 ◽  
pp. 148-153 ◽  
Author(s):  
Ruiying Guo ◽  
Wei Qin ◽  
Chunguang Jiang ◽  
Lingyun Kang ◽  
Claas Nendel ◽  
...  
HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 440A-440 ◽  
Author(s):  
G.D. Hoyt ◽  
J.E. Walgenbach ◽  
P.B. Shoemaker

This experiment was designed to compare best management practices for conventional and conservation tillage systems, chemical IPM vs. organic vegetable production, and rotation effect on tomatoes. Three vegetables were grown under these management practices with sweet corn (1st year) and fall cabbage or cucumber (2nd year), and fall cabbage on half of the field plots and tomatoes on the other half. The treatments were: 1) conventional-tillage with chemical-based IPM; 2) conventional-tillage with organic-based IPM; 3) conservation-tillage with chemical-based IPM; 4) conservation-tillage with organic-based IPM; and 5) conventional-tillage with no fertilizer or pest management (control). This poster describes sweet corn, cabbage, and cucumber yields from the various treatments over two 3-year rotations. Sweet corn yields were 34% higher in treatments with chemical fertilizer and pest control than with organic methods. Ear worm damage was high (58%) in the organic treatment compared to the chemical IPM program (14%). Fall cabbage was planted after sweet corn and cucumber harvest (all treatments were reapplied). Marketable cabbage yields were in the order: conventional-tilled-organic > strip-tilled-chemical > conventional-tilled-chemical > strip-till-organic > control for both years. Percent culls (< .9 kg heads) were in reverse order of marketable heads. Cabbage insect control was similar in chemical IPM and organic management. Cucumber yields were in the order: conventional-tilled-chemical > conventional-tilled-organic = strip-till-chemical > strip-tilled-organic > control for both years. Insect damage on cucumber fruit was 51% for organic systems and 1% for chemical methods of production. No differences were seen between tillage system within the same production system (chemical vs organic).


HortScience ◽  
2006 ◽  
Vol 41 (7) ◽  
pp. 1576-1583 ◽  
Author(s):  
V.M. Russo ◽  
Merritt Taylor

Many producers who have used conventional production methods for vegetables, and who want to convert to organic production, will have to pass through a 3-year transition period before their land can be qualified for organic certification. This transition can produce unique challenges. Use of several amendments has received interest for inclusion in organic production. How these affect vegetable production during the transition period was examined. Land was taken from perennial pasture and converted to production of the vegetables: bell pepper (Capsicum annuum L.), cv. Jupiter; processing cucumber (Cucumis sativus L.), cv. Earli Pik; and sweet corn (Zea mays L.), cv. Incredible (se endosperm genotype) using organic materials and methods with comparison made to production using conventional methods. Conventional and transition to organic portions of the field were separated by 25 m with the buffer zone planted with the same sweet corn cultivar used in the experimental plots and minimally maintained by addition of organic fertilizer. To the organic portion of the field, three levels of humates (0, 112, and 224 kg·ha–1) and three levels of corn gluten meal (0, 448, and 896 kg·ha–1) were applied in nine combinations. Yields for all crops were determined for all years. In the first year, bell pepper yields for plants under conventional production were higher than for the plants in the transition plots. In the remaining 2 years, bell pepper yields were similar under the two production systems. In the first 2 years, cucumber yields for plants under conventional production were higher than for the plants under transition to organic production. In the last year, cucumber yields were similar under the two production systems. In all years, sweet corn yields for plants under conventional production were higher than for plants under transition to organic production. Humates and corn gluten meal did not benefit yields of crops. An economic analysis comparing yields, prices, and costs of production of the crops under conventional and the transition to organic indicated that conventional practices generally provided more net revenue than did transition to organic production. Net revenue for the three species under the transition to organic for the 3 years was $2749 for three hectares. Net revenue for the three crops under conventional production for 3 years was $61,821, a difference of $59,072. Costs, yield, and prices will have to be considered when decisions are made concerning the adoption of organic practices.


Soil Research ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 244 ◽  
Author(s):  
Yadunath Bajgai ◽  
Paul Kristiansen ◽  
Nilantha Hulugalle ◽  
Melinda McHenry

Vegetable production systems rely on frequent tillage to prepare beds and manage weeds, thereby accelerating losses of soil organic carbon (SOC). They are also characterised by scant crop residue input. Residue incorporation and organic fertiliser application could counteract SOC loss due to tillage. We tested this hypothesis in a Chromosol and a Vertosol in northern NSW, Australia, where the effects of incorporating sweet corn (Zea mays L. var. rugosa) residue in soil in a corn–cabbage (Brassica oleracea L.) rotation under either organic or conventional system on soil C fractions were studied during two rotation cycles (2 years). A laboratory experiment was conducted to isolate the effect of tillage on the soil organic matter (SOM) fractions, because both the residue-incorporated and without-residue treatments for organic systems received tillage for weed control in the field, whereas conventional systems did not. Residue incorporation increased particulate OC (POC) by 32% in the field experiment and 48% in the laboratory experiment, whereas dissolved OC was increased only in the organic system. Concentrations of mineral-associated OC (MOC) and total OC (TOC) were increased by residue incorporation in both field and laboratory experiments. Simulated tillage had a limited effect on POC, MOC and TOC, suggesting that cultivation for weed control may have only a minor effect on short-term SOM mineralisation rates. In both experiments, MOC accounted for ≥83% in the Vertosol and ≥73% in the Chromosol. Due to frequent tillage in vegetable production systems, physicochemical stabilisation of C predominates over protection through aggregation.


EDIS ◽  
2021 ◽  
Author(s):  
Ramdas Kanissery ◽  
Eugene McAvoy ◽  
Richard N. Raid ◽  
Johan Desaeger ◽  
Julien Beuzelin

Chapter 17 of the Vegetable Production Handbook.


Sign in / Sign up

Export Citation Format

Share Document