scholarly journals 282 Vegetable Yields under Sustainable Production Systems

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 440A-440 ◽  
Author(s):  
G.D. Hoyt ◽  
J.E. Walgenbach ◽  
P.B. Shoemaker

This experiment was designed to compare best management practices for conventional and conservation tillage systems, chemical IPM vs. organic vegetable production, and rotation effect on tomatoes. Three vegetables were grown under these management practices with sweet corn (1st year) and fall cabbage or cucumber (2nd year), and fall cabbage on half of the field plots and tomatoes on the other half. The treatments were: 1) conventional-tillage with chemical-based IPM; 2) conventional-tillage with organic-based IPM; 3) conservation-tillage with chemical-based IPM; 4) conservation-tillage with organic-based IPM; and 5) conventional-tillage with no fertilizer or pest management (control). This poster describes sweet corn, cabbage, and cucumber yields from the various treatments over two 3-year rotations. Sweet corn yields were 34% higher in treatments with chemical fertilizer and pest control than with organic methods. Ear worm damage was high (58%) in the organic treatment compared to the chemical IPM program (14%). Fall cabbage was planted after sweet corn and cucumber harvest (all treatments were reapplied). Marketable cabbage yields were in the order: conventional-tilled-organic > strip-tilled-chemical > conventional-tilled-chemical > strip-till-organic > control for both years. Percent culls (< .9 kg heads) were in reverse order of marketable heads. Cabbage insect control was similar in chemical IPM and organic management. Cucumber yields were in the order: conventional-tilled-chemical > conventional-tilled-organic = strip-till-chemical > strip-tilled-organic > control for both years. Insect damage on cucumber fruit was 51% for organic systems and 1% for chemical methods of production. No differences were seen between tillage system within the same production system (chemical vs organic).

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1000D-1000 ◽  
Author(s):  
Greg D. Hoyt

This experiment was designed to compare best management practices for conventional and conservation tillage systems, chemical IPM vs. organic vegetable production, and rotation effect on tomatoes. Four vegetables were grown under these management practices with peppers (first year), yellow squash and fall broccoli (second year) on half of the field plots and tomatoes on the other half. For the third year, both sections of the field plots were tomatoes. The treatments were: 1) conventional-tillage with chemical-based IPM; 2) conventional-tillage with organic-based IPM; 3) conservation-tillage with chemical-based IPM; 4) conservation-tillage with organic-based IPM; and 5) conventional-tillage with no fertilizer or pest management (control). This poster describes pepper, yellow squash, fall broccoli, and tomato yields from the various treatments over the 3-year rotation. These results are for the third rotation sequence (years 79). Pepper yields were higher in treatments with chemical fertilizer and pest control. Fall broccoli yields were in the order: strip-tilled-chemical ≥ strip-till-organic ≥ conventional-tilled-chemical ≥ conventional-tilled-organic ≥ control. Yellow summer squash yields were in the order: conventional-tilled-chemical ≥ conventional-tilled-organic ≥ strip-till-chemical ≥ strip-tilled-organic ≥ control. Tomato yields were in the order: conventional-tilled chemical ≥ strip-till-chemical ≥ conventional-tilled-organic ≥ strip-tilled-organic ≥ control for each of the 3 years.


2009 ◽  
Vol 24 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Olha Sydorovych ◽  
Charles W. Raczkowski ◽  
Ada Wossink ◽  
J. Paul Mueller ◽  
Nancy G. Creamer ◽  
...  

AbstractConventional agriculture often aims to achieve high returns without allowing for sustainable natural resource management. To prevent environmental degradation, agricultural systems must be assessed and environmental standards need to be developed. This study used a multi-factor approach to assess the potential environmental impact risk of six diverse systems: five production systems and a successional system or abandoned agronomic field. Assessment factors were soil quality status, amount of pesticide and fertilizer applied and tillage intensity. The assessment identified the best management practices (BMP)–conventional tillage system as a high-risk system mostly because of extensive tillage. The certified organic system was also extensively tilled and was characterized by P build-up in the soil, but performed well based on other assessment factors. Conversely, the BMP–no tillage and the crop–animal integrated system were characterized as low risk mainly because of reduced tillage. The paper discusses assessment strengths and weaknesses, ways to improve indicators used, and the need for additional indicators. We concluded that with further development the technique will become a resourceful tool to promote agricultural sustainability and environmental stewardship and assist policy-making processes.


2013 ◽  
Vol 23 (5) ◽  
pp. 553-562 ◽  
Author(s):  
Luther C. Carson ◽  
Monica Ozores-Hampton

This publication summarizes the factors influencing controlled-release fertilizer (CRF) nutrient release, CRF placement, CRF rate, and CRF application timing for the two major seepage-irrigated vegetable production systems (plasticulture and open-bed) in Florida. One of several best management practices for vegetable production, CRF helps growers achieve total maximum daily loads (TMDLs) established in Florida under the Federal Clean Water Act. Several factors intrinsic to CRF and to the vegetable production systems affect CRF nutrient release, making implementation of CRF fertility programs challenging. Increasing or decreasing soil temperature increases or decreases nutrient release from CRF. Soil moisture required for uninhibited plant growth is within the soil moisture range for optimum CRF nutrient release. CRF substrate affects nutrient release rate, which is inversely related to coating thickness and granule size. Soil microbes, soil texture, and soil pH do not influence nutrient release rate. Field placement of CRFs in seepage-irrigated, plasticulture, and open-bed production should be in the bottom mix at bed formation and soil incorporated or banded at planting, respectively. In plasticulture production systems, soil fumigation and delayed planting for continuous harvest may add a 14- to 21-day lag period between fertilization and planting, which along with different season lengths will influence CRF release length selected by growers. Using a hybrid fertilizer system in plasticulture production or incorporating CRF at planting in open-bed production allows for up to a 25% reduction in the nitrogen (N) rate needed.


2017 ◽  
Vol 31 (4) ◽  
pp. 557-573 ◽  
Author(s):  
Guihua Chen ◽  
Lauren Kolb ◽  
Alan Leslie ◽  
Cerruti R. R. Hooks

Adoption of conservation tillage practices has been slow in organic vegetable production, partially due to producers’ concerns regarding weed management. Integrating cover crops into a conservation tillage program may provide organic producers a viable weed management option enabling growers to practice conservation tillage. A four-year study was conducted to evaluate the influence of different tillage methods (two conventional and two conservation practices) jointly with a mixed winter cover crop for weed suppression, time required for hand weeding, and crop yield in organically managed eggplant (2012 and 2014) and sweet corn (2013 and 2015) production systems. Tillage treatments were conventional tillage without surface mulch (CT-BG) and with black polyethylene (plastic) mulch (CT-BP), strip-tillage (ST), and no-tillage (NT) with cover crop residue. At 2 and 7 WAT/P (weeks after transplanting/planting), intra-row weed density was higher in CT-BG and ST, and inter-row weed density was higher in CT-BG and CT-BP treatments. Time required for hand-weeding was greatest in CT-BG and least in CT-BP and NT treatments. Eggplant yield was lowest in NT treatment in 2012 but similar among treatments in 2014. Sweet corn yield was similar among treatments in 2013 but highest in ST in 2015. Though both CT-BP and NT treatments showed greater potential for weed suppression, production input was highest in CT-BP but least in NT. Implications of these findings suggest that there is a potential to use strip tillage integrating with stale seedbed tactic for weed management in organic vegetables, which reduces herbicide use, hand-labor, and overall weed management cost while maintaining high yield potential.


1999 ◽  
Vol 14 (2) ◽  
pp. 85-92 ◽  
Author(s):  
M. Ashraf ◽  
C.H. Pearson ◽  
D.G. Westfall ◽  
R. Sharp

AbstractConservation tillage (CS) is used widely in rainfed and sprinkler-irrigated production systems but adoption of CS on furrow-irrigated cropland has been limited. Some crops and crop rotations are more conducive to conservation tillage under furrow irrigation than others. The objective of this research was to evaluate CS in a furrowirrigated crop rotation of corn, soybean, winter barley, and dry bean at Fruita, Colorado in 1991 and 1992. Infiltration rates were 24 and 50% higher and advance times were 37 and 25% longer in the CS treatment during 1991 and 1992, respectively, compared with conventional tillage (CV). Furrows in the CV treatment were 8 and 25% wider than those in the CS treatment after the first and sixth irrigations, respectively. This indicates more soil movement with CV than with CS. In 1992, soil water content in the CS treatment was 17, 17, and 27% higher than with CV throughout the growing season for corn, soybean, and dry bean, respectively. Grain yields of winter barley, soybean, dry bean, and corn were not affected significantly by tillage treatment. Profitability of CS and CV was quite similar when all four crops in the rotation were considered together. This research was conducted under conditions expected to be similar to those that could be used by growers and indicates that corn, soybean, winter barley, and dry bean can be grown successfully in rotation using conservation tillage under furrowirrigated conditions. Successful adoption of conservation tillage under furrow irrigation will require growers to adopt encompassing new production management practices and possibly purchase new equipment such as planters and cultivators that will operate in high residue conditions, and growers must overcome any psychological barriers they may have to maintaining high amounts of surface crop residue when furrow irrigating.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 987E-988
Author(s):  
Johannes Scholberg ◽  
Kelly Morgan ◽  
Lincoln Zotarelli ◽  
Eric Simonne ◽  
Michael Dukes

Most strategies used to determine crop N fertilizer recommendations do not address potential environmental issues associated with agricul-tural production. Thus, a more holistic approach is required to reduce N loading associated with vegetable crops production on soils that are prone to N leaching. By linking fertilizer N uptake efficiency (FUE) with irrigation management, root interception capacity, and N uptake dynamics, we aim to improve FUE. Nitrogen uptake for peppers, tomato, potato, and sweet corn followed a logistic N accumulation patterns. Up to 80-85% of N uptake occurred between 4 to 7 weeks (sweet corn) vs. 6 to 12 weeks (other crops), while N uptake during initial growth and crop maturation was relatively low. Maximum daily N accumulation rates occurred at 5 weeks (sweet corn) vs. 8-10 weeks (other crops) and maximum daily N uptake rates were 4-8 kg N/ha. Overall FUE for most vegetables may range between 23% and 71%, depending on production practices, soil type, and environmental conditions. Maximum root interception capacity was typically attained 3 to 5 weeks prior to crop maturity. It is concluded that, during initial growth, root interception may the most limiting factor for efficient N use. Although recent uptake studies have shown that FUE may be highest toward the end of the growing season, this may not coincide with the greatest crop demand for N, which occurs during the onset of the linear growth phase. As a result, yield responses to N applied later in the season may be limited. Integration of these results into best management practices and expert systems for vegetable production can minimize the externalities associated with commercial vegetable production on vulnerable soils in the southeastern United States.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 494f-495 ◽  
Author(s):  
Amy M. Johnson ◽  
Greg D. Hoyt

An experiment was established to determine the effect of different tillage practices, vegetable crop rotations, and pest management strategies on crop yield, plant diseases, pest and beneficial arthropods, weed species changes over time, and soil environmental consequences. This poster describes nitrogen movement from the various treatments over a 3-year rotation. The treatments are: 1) conventional tillage with chemically based IPM; 2) conventional tillage with biologically based IPM; 3) conservation tillage with chemically based IPM; 4) conservation tillage with biologically based IPM; and 5) conventional tillage with no fertilizer or pest management. Mid-season soil analyses with depth showed chemical-fertilized plowed and conservation-tilled treatments with more soil available nitrogen at most depths compared to the biological-based IPM systems (soybean meal was used as a nitrogen source). However, the biological-based systems did supply enough soil nitrogen to produce similar yield results as the chemical-based systems. Less soil nitrate was measured in the 30- to 90-cm depths at harvest from the biological-based systems than chemical-based systems. Conservation-tilled systems had greater nitrate with depth compared to conventional-tilled systems.


2016 ◽  
Vol 5 (4) ◽  
pp. 46 ◽  
Author(s):  
Mona Ahmadiani ◽  
Chun Li ◽  
Yaqin Liu ◽  
Esendugue Greg Fonsah ◽  
Christine Bliss ◽  
...  

<p class="sar-body"><span lang="EN-US">There are little economic data concerning the profitability of organic vegetable crops in the Southern Coastal Plain, especially in reference to sod-based rotation and tillage alternatives.  A three-year experiment was conducted at the North Florida Research and Education Center-Quincy involving a crop rotation sequence of oats and rye (winter), bush beans (spring), soybean (summer) and broccoli (fall). Bush beans and broccoli were the cash crops. This paper presents analyses of the riskiness of organic production utilizing years in bahiagrass prior to initiating the crop rotation sequence and conventional tillage (CT) versus strip tillage (ST). Methods of “Risk-rated enterprise budget” and “Analyses of Variance-Covariance Matrix (ANOVA)” were utilized for determining relative profitability, and coefficient of variation was applied for measuring riskiness of each treatment. Three years of bahiagrass prior to initiating the crop rotation sequence, in combination with conventional tillage, had the highest profitability and ranked as the least risky scenario.  The second most profitable treatment was conventional tillage with four years of bahiagrass. Focusing on strip tillage, four years of bahiagrass with strip-tillage ranked third in term of profitability.</span></p>


2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.


2016 ◽  
Vol 108 (3) ◽  
pp. 1142-1154 ◽  
Author(s):  
Craig G. Cogger ◽  
Andy I. Bary ◽  
Elizabeth A. Myhre ◽  
Ann-Marie Fortuna ◽  
Doug P. Collins

Sign in / Sign up

Export Citation Format

Share Document