A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China

2009 ◽  
Vol 10 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Changsheng Zhao ◽  
Chengxiao Hu ◽  
Wei Huang ◽  
Xuecheng Sun ◽  
Qiling Tan ◽  
...  
Author(s):  
C.G. Roach ◽  
G. Stevens ◽  
D.A. Clark ◽  
P. Nicholas

encouraged by many regional councils, and the use of urea fertiliser on dairy farms has increased over recent years. A 3-year trial was started in September 1997 to investigate the effects of urea and dairy effluent applications on pastures, soils and groundwater quality. Twenty-one 0.25 ha paddocks received urea or dairy effluent at rates of 0, 100, 200, or 400 kg N/ha/yr, and were grazed by dairy cows. Increasing nitrogen application rates resulted in increased pasture production and ryegrass content, and nitrate leaching to ground water. Nitrate leaching was estimated to be 14, 18, 26 and 56 kg N/ha/yr for the 0, 100, 200 and 400 kg N/ha/yr application rates respectively. No differences in these responses were measured between urea and effluent when applied at the same rate of nitrogen. Application of dairy effluent resulted in increased average pasture potassium levels from 3.65%DM to 4.00%DM, which may have implications for animal health. Application of dairy effluent also decreased soil sulphur levels and increased soil magnesium status. Keywords: dairy effluent, groundwater, nitrate leaching, nitrogen, pasture, soil, urea


2021 ◽  
Author(s):  
Waqas Qasim ◽  
Yiming Zhao ◽  
Li Wan ◽  
Haofeng Lv ◽  
Shan Lin ◽  
...  

Abstract Background About 30 % of vegetables in China are produced in intensively managed greenhouses comprising flood irrigation and extreme rates of nitrogen fertilizers. Little is known about denitrification N losses. Methods Soil denitrification rates were measured by the acetylene inhibition technique applied to anaerobically incubated soil samples. Four different greenhouse management systems were differentiated: Conventional flood irrigation and over-fertilization (CIF, 800 kg N ha−1, 460 mm); CIF plus straw incorporation (CIF+S, 889 kg N ha−1, 460 mm); Drip fertigation with reduced fertilizer application rates (DIF, 314 kg N ha−1, 190 mm); DIF plus straw incorporation (DIF+S, 403 kg N ha−1, 190 mm). Soil denitrification was measured on nine sampling dates during the growing season (Feb 2019-May 2019) for the top-/ subsoil (0 – 20/ 20- 40 cm) and on three sampling dates for deep soils (40-60/ 80-100 cm). Data was used to constrain N-input-output balances of the different vegetable production systems. Results Rates of denitrification were at least one magnitude higher in topsoil than in sub- and deep soils. Total seasonal denitrification N losses for the 0 – 40 cm soil layer ranged from 76 (DIF) to 422 kg N ha−1 (CIF+S). Straw addition stimulated soil denitrification in top- and subsoil, but not in deep soil layers. Integrating our denitrification data (0-100 cm) with additional data on N leaching, N2O emissions, plant N uptake, and NH3 volatilization showed, that on average 50 % of added N fertilizers are lost due to denitrification. Conclusions Denitrification is likely the dominant environmental N loss pathway in greenhouse vegetable production systems. Reducing irrigation and fertilizer application rates while incorporating straw in soils allows the reduction of accumulated nitrate.


1996 ◽  
Vol 6 (3) ◽  
pp. 168-172 ◽  
Author(s):  
T.K. Hartz ◽  
G.J. Hochmuth

Drip irrigation provides an efficient method of fertilizer delivery virtually free of cultural constraints that characterize other production systems. Achieving maximum fertigation efficiency requires knowledge of crop nutrient requirements, soil nutrient supply, fertilizer injection technology, irrigation scheduling, and crop and soil monitoring techniques. If properly managed, fertigation through drip irrigation lines can reduce overall fertilizer application rates and minimize adverse environmental impact of vegetable production.


2014 ◽  
Vol 24 (5) ◽  
pp. 502-511 ◽  
Author(s):  
Aaron Heinrich ◽  
Richard Smith ◽  
Michael Cahn

High levels of residual soil nitrate are typically present in cool-season vegetable fields in coastal regions of California in the fall, after the production of multiple crops over the course of the growing season. This nitrate is subject to leaching with winter rains when fields are left fallow. Although the benefits of growing nitrate scavenging cover crops on soil and water quality are well documented, the portion of vegetable production fields planted to winter cover crops in this region is low. Most growers leave their fields unplanted in bare-fallow beds because the risk of having too much cover crop residue to incorporate may delay late winter and early spring planting schedules. A possible strategy to derive benefits of a cover crop yet minimize the amount of residue is to kill the cover crop with an herbicide when biomass of the cover crop is still relatively low. To evaluate whether this strategy would be effective at reducing nitrate leaching, we conducted field studies in Winter 2010–11 (Year 1) and Winter 2011–12 (Year 2) with cereal rye (Secale cereale). Each trial consisted of three treatments: 1) Fallow (bare fallow), 2) Full-season (cover crop allowed to grow to full term), and 3) Partial-season (cover crop killed with herbicide 8 to 9 weeks after emergence). In Year 1, which received 35% more rainfall than the historical average during the trial, the Full-season cover crop reduced nitrate leaching by 64% relative to Fallow, but the Partial-season had no effect relative to Fallow. In Year 2, which received 47% less rainfall than the historical average during the trial, the Full- and Partial-season cover crops reduced nitrate leaching by 75% and 52%, respectively, relative to Fallow. The Full-season cover crop was able to reduce nitrate leaching regardless of yearly variations in the timing and amount of precipitation. Although the Partial-season cover crop was able to reduce leaching in Year 2, the value of this winter-kill strategy to reduce nitrate leaching is limited by the need to kill the crop when relatively young, resulting in the release of nitrogen (N) from decaying residues back into the soil where it is subject to leaching.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1110B-1110
Author(s):  
Richard F. Smith ◽  
Louise E. Jackson ◽  
Tiffany A. Bensen

Lettuce growers in the Salinas Valley are often not able to rotate to other crops due to economic pressure, such as high land rent. Winter-grown cover crops (October to March) provide a short-term rotation from lettuce and have been shown to reduce nitrate leaching by 75%. However, the use of winter-grown cover crops is low due to the extended time these cover crops tie up the ground. As a result, growers are interested in the potential of fall-grown cover crops (September to October) to reduce nitrate leaching through the winter. Fall-grown cover crops are incorporated into the soil prior to the onset of winter rains and leave the soil bare over the winter; however, during fall growth, the cover crop has the potential to capture excess nitrate that may leach during the fallow period, but how much has not been previously measured. A long-term trial was established in Fall 2003 using treatments of Indian mustard (B. juncea) `ISCI 61', White mustard (S. alba) `Ida Gold', Cereal rye (Secale cereale) `Merced', and a no cover crop control. All cover crops contained ≈224 kg·ha-1 N upon incorporation. Anion resin bags were installed 90 cm deep in the soil following incorporation to trap leaching nitrate; they were left in place until planting of the lettuce the following spring. First-year results indicated that the mustard cover crops and `Merced' rye all reduced nitrate leaching to the 90-cm depth by 67% to 82% over the bare fallow treatment. These results indicate that fall-grown cover crops have the potential to reduce nitrate leaching in lettuce production systems in the Salinas Valley.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Aloysius Beah ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Folorunso M. Akinseye ◽  
Abdullahi I. Tofa ◽  
...  

This paper assessed the application of the Agricultural Production Systems sIMulator (APSIM)–maize module as a decision support tool for optimizing nitrogen application to determine yield and net return of maize production under current agricultural practices in the Nigeria savannas. The model was calibrated for two maize varieties using data from field experiments conducted under optimum conditions in three locations during the 2017 and 2018 cropping seasons. The model was evaluated using an independent dataset from an experiment conducted under different nitrogen (N) levels in two locations within Southern and Northern Guinea savannas. The results show that model accurately predicted days to 50% anthesis and physiological maturity, leaf area index (LAI), grain yield and total dry matter (TDM) of both varieties with low RMSE and RMSEn (%) values within the range of acceptable statistics indices. Based on 31-year seasonal simulation, optimum mean grain yield of 3941 kg ha−1 for Abuja, and 4549 for Kano was simulated at N rate of 120 kg ha–1 for the early maturing variety 2009EVDT. Meanwhile in Zaria, optimum mean yield of 4173 kg ha–1 was simulated at N rate of 90 kg ha−1. For the intermediate maturing variety, IWDC2SYNF2 mean optimum yields of 5152, 5462, and 4849 kg ha−1, were simulated at N application of 120 kg ha−1 for all the locations. The probability of exceeding attainable mean grain yield of 3000 and 4000 kg ha−1 for 2009EVDT and IWDC2SYNF2, respectively would be expected in 95% of the years with application of 90 kg N ha−1 across the three sites. Following the profitability scenarios analysis, the realistic net incomes of US$ 536 ha–1 for Abuja, and US$ 657 ha−1 for Zaria were estimated at N rate of 90 kg ha−1 and at Kano site, realistic net income of US$ 720 ha–1was estimated at N rate of 120 kg ha−1 for 2009EVDT.For IWDC2SYNF2, realistic net incomes of US$ 870, 974, and 818 ha−1 were estimated at N application of 120 kg ha−1 for Abuja, Zaria, and Kano respectively. The result of this study suggests that 90 kg N ha−1 can be recommended for 2009EVDT and 120 kg N ha–1 for IWDC2SYNF2 in Abuja and Zaria while in Kano, 120 kg N ha−1 should be applied to both varieties to attain optimum yield and profit.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 31-31
Author(s):  
Kevin R Meng ◽  
Eric Bailey ◽  
Josh Zeltwanger ◽  
Hannah Allen ◽  
Mikaela Adams ◽  
...  

Abstract Chemical seed-head suppression of endophyte infected tall fescue (Lolium arundinaceum) improves stocker cattle performance but may decrease forage yield. Spring nitrogen application increases tall fescue growth with a concomitant increase in ergot alkaloids, produced by the symbiotic endophyte Epichloë coenophiala. We hypothesized that greater amounts of nitrogen applied to tall fescue would increase forage yield and offset losses in forage production from chemical suppression of seed-heads with metsulfuron without effect on alkaloid concentration. Ninety-six steers (270 ± 20 kg) were randomly assigned to one of sixteen paddocks (1.8 ha) on April 18 and continuously grazed for 57 d. Paddocks were blocked by previous use (n = 4) and randomly assigned to one of four treatments; no metsulfuron, no nitrogen (NEGCON), metsulfuron with 0 (MET0), 67 (MET67), or 134 (MET134) kg/ha of ammonium nitrate, applied March 11. Steers grazing MET0 paddocks were removed 17 d early due to insufficient forage availability. Steer weight, forage yield, forage nutritive value and ergot alkaloids in forage samples were measured monthly. Seed-head frequency and species composition were determined in June. Metsulfuron application reduced (P < 0.01) tall fescue seed-heads by 80%. Metsulfuron decreased (P = 0.03) ergovaline but ergovaline increased (P < 0.01) at each monthly sampling across treatments. Nitrogen had no impact on ergovaline concentration (P = 0.50). Forage yield tended to be least (P = 0.07) for MET0, intermediate for NEGCON and MET67, and tended to be greatest for MET134 (P = 0.08). Steer ADG was not affected by treatment (P < 0.80). Metsulfuron decreased NDF (P=0.02) regardless of fertilization rate. Forage CP increased with fertilization (P < 0.01) and no differences were detected between NEGCON and MET0 (P = 0.45). Species composition was not impacted (P >0.07) by treatment. Metsulfuron decreased seed-head growth and ergovaline concentration in tall fescue. Additional nitrogen fertilizer ameliorated forage yield lost to metsulfuron application but did not impact steer gain.


Sign in / Sign up

Export Citation Format

Share Document