An equivalent expectation evaluation method for approximating the probability distribution of performance functions

2022 ◽  
Vol 95 ◽  
pp. 102180
Author(s):  
Chao-Huang Cai ◽  
Yan-Gang Zhao ◽  
Zhao-Hui Lu ◽  
Yu Leng
2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Xintao Xia ◽  
Wenhuan Zhu ◽  
Bin Liu

The output performance of the manufacturing system has a direct impact on the mechanical product quality. For guaranteeing product quality and production cost, many firms try to research the crucial issues on reliability of the manufacturing system with small sample data, to evaluate whether the manufacturing system is capable or not. The existing reliability methods depend on a known probability distribution or vast test data. However, the population performances of complex systems become uncertain as processing time; namely, their probability distributions are unknown, if the existing methods are still taken into account; it is ineffective. This paper proposes a novel evaluation method based on poor information to settle the problems of reliability of the running state of a manufacturing system under the condition of small sample sizes with a known or unknown probability distribution. Via grey bootstrap method, maximum entropy principle, and Poisson process, the experimental investigation on reliability evaluation for the running state of the manufacturing system shows that, under the best confidence levelP=0.95, if the reliability degree of achieving running quality isr>0.65, the intersection area between the inspection data and the intrinsic data isA(T)>0.3and the variation probability of the inspection data isPB(T)≤0.7, and the running state of the manufacturing system is reliable; otherwise, it is not reliable. And the sensitivity analysis regarding the size of the samples can show that the size of the samples has no effect on the evaluation results obtained by the evaluation method. The evaluation method proposed provides the scientific decision and suggestion for judging the running state of the manufacturing system reasonably, which is efficient, profitable, and organized.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Ivan Gabriel-Martin ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote ◽  
Isabel Granados

Hydrological dam safety assessment methods traditionally assume that the reservoir is full while it receives the design flood. In practice, reservoir management strategy determines the probability distribution of reservoir levels at the beginning of flood episodes. In this study, we present a method to economically assess the influence of reservoir management strategy on hydrological dam safety and downstream flood risk. The method was applied to a gated spillway dam located in the Tagus River basin. A set of 100,000 inflow hydrographs was generated through a Monte Carlo procedure, reproducing the observed statistics of main hydrograph characteristics: peak flow, volume, and duration. The set of 100,000 hydrographs was routed through the reservoir applying the volumetric evaluation method as a flood control strategy. Three different scenarios were studied: Initial reservoir level equal to maximum normal level, equal to a maximum conservation level, and following the probability distribution of initial reservoir levels. In order to evaluate economically the influence of initial variable reservoir level and compare the three scenarios, a global risk index was applied. The index combines the hydrological risk for the dam, linked to the maximum water level experienced in the reservoir while the flood is routed, and the flood risk in the downstream river reach, linked to the discharge releases from the dam. The results highlighted the importance of considering the fluctuation of initial reservoir level for assessing the risk related to hydrological dam safety.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879726 ◽  
Author(s):  
Juan Wen ◽  
Hongli Gao

The ball screw is an important component of machine tools, and its degradation assessment is therefore critical for the health management of the entire machine tool. Generally, the degradation assessment includes health indicator construction and degradation modeling. However, the health indicator is often constructed manually with prior knowledge, and its sensitivity can be affected by various factors. In addition, most existing degradation models rely on a large amount of failure data, which is not practical for the ball screw due to its high reliability. To solve these problems, this article presents a novel ball screw performance evaluation method. First, the raw data collected in the normal status are used to train the variational autoencoder, and then, the online raw signals are input into the learned variational autoencoder to construct health indicators. After that, the kernel density estimation is utilized to estimate the probability distribution of health indicator points in a dynamic sliding window, and then, the deterioration can be evaluated by summarizing the probability distribution that exceeds a predefined threshold. Experimental results show that the presented methodology can establish the health indicator automatically and adaptively. Also, it can evaluate the ball screw performance effectively and quantitatively when only data in healthy state are available.


Author(s):  
T. Oikawa ◽  
H. Kosugi ◽  
F. Hosokawa ◽  
D. Shindo ◽  
M. Kersker

Evaluation of the resolution of the Imaging Plate (IP) has been attempted by some methods. An evaluation method for IP resolution, which is not influenced by hard X-rays at higher accelerating voltages, was proposed previously by the present authors. This method, however, requires truoblesome experimental preperations partly because specially synthesized hematite was used as a specimen, and partly because a special shape of the specimen was used as a standard image. In this paper, a convenient evaluation method which is not infuenced by the specimen shape and image direction, is newly proposed. In this method, phase contrast images of thin amorphous film are used.Several diffraction rings are obtained by the Fourier transformation of a phase contrast image of thin amorphous film, taken at a large under focus. The rings show the spatial-frequency spectrum corresponding to the phase contrast transfer function (PCTF). The envelope function is obtained by connecting the peak intensities of the rings. The evelope function is offten used for evaluation of the instrument, because the function shows the performance of the electron microscope (EM).


2002 ◽  
Vol 7 (2) ◽  
pp. 1-4, 12 ◽  
Author(s):  
Christopher R. Brigham

Abstract To account for the effects of multiple impairments, evaluating physicians must provide a summary value that combines multiple impairments so the whole person impairment is equal to or less than the sum of all the individual impairment values. A common error is to add values that should be combined and typically results in an inflated rating. The Combined Values Chart in the AMA Guides to the Evaluation of Permanent Impairment, Fifth Edition, includes instructions that guide physicians about combining impairment ratings. For example, impairment values within a region generally are combined and converted to a whole person permanent impairment before combination with the results from other regions (exceptions include certain impairments of the spine and extremities). When they combine three or more values, physicians should select and combine the two lowest values; this value is combined with the third value to yield the total value. Upper extremity impairment ratings are combined based on the principle that a second and each succeeding impairment applies not to the whole unit (eg, whole finger) but only to the part that remains (eg, proximal phalanx). Physicians who combine lower extremity impairments usually use only one evaluation method, but, if more than one method is used, the physician should use the Combined Values Chart.


Sign in / Sign up

Export Citation Format

Share Document