The influence of plasma power on the temperature-dependant conductivity and on the wet chemical etch rate of sputter-deposited alumina thin films

2009 ◽  
Vol 203 (19) ◽  
pp. 2830-2834 ◽  
Author(s):  
S. Fricke ◽  
A. Friedberger ◽  
U. Schmid
2008 ◽  
Vol 5 (4) ◽  
pp. 169-173 ◽  
Author(s):  
A. Bittner ◽  
T. Bohnenberger ◽  
R. Engel ◽  
H. Seidel ◽  
U. Schmid

Screen printed noble metal thick films are commonly used as metallization on LTCC (low temperature cofired ceramics) substrates. When, however, geometries with a lateral resolution below 20 μm are needed for the realization of devices, alternative techniques are needed, and they are provided by standard thin film technology. To minimize conduction losses, silver (Ag) is favored due to a low bulk resistivity. To evaluate the potential of Ag as metallization, thin films are sputter deposited on glass and LTCC substrates under varying conditions (i.e., plasma power) with different film thicknesses ranging up to 1.75 μm. The microstructure of the Ag films is analyzed applying techniques such as scanning electron microscopy, focused ion beam, and x-ray diffraction. With the latter approach, a mean grain size of about 33 nm is measured independent of plasma power used for Ag deposition. In contrast, the texture strongly varies with deposition parameters resulting in an enhanced generation of (111) planes at higher plasma powers due to an increased adatom mobility. Furthermore, a higher degree in (111) orientation results in a lower resistivity of the Ag films. When the Ag films are postdeposition annealed at 500°C, the resistivity decreases by a factor of 2 compared with the “as deposited” state due to grain growth. Further, sublimation and agglomeration effects dominate leading to an increase in surface roughness and resistivity above average.


2008 ◽  
Vol 54 ◽  
pp. 41-49 ◽  
Author(s):  
Ulrich Schmid ◽  
José Luis Sánchez-Rojas

In this study, aluminum nitride (AlN) thin films reactively sputter deposited from an aluminium target are characterized both under material related aspects as well as on device level for resonantly driven gyroscopes. The first topic comprises a qualitative evaluation of the c-axis orientation by applying a wet chemical etching procedure in phosphoric acid to specimens synthesized under varying sputter deposition conditions. Samples with a high c-axis orientation show a low etch rate and smooth surface characteristics on the etched areas and vice versa. Furthermore, a quantitative determination of the piezoelectric coefficients is presented including the impact of the silicon substrate on the change in AlN film thickness under excitation. With this advanced approach, the d33 and the d31 coefficients are gained simultaneously with high accuracy comparing FEM simulations and interferometric measurements. Finally, AlN are applied to bulkmicromachined gyroscopes to stimulate the drive mode. Parasitic effects on the performance generated by the microactuator elements are identified and potential improvements are proposed.


Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-689-C8-694 ◽  
Author(s):  
T. Hashinaga ◽  
S. Miyazaki ◽  
T. Ueki ◽  
H. Horikawa

2003 ◽  
Vol 766 ◽  
Author(s):  
A. Sekiguchi ◽  
J. Koike ◽  
K. Ueoka ◽  
J. Ye ◽  
H. Okamura ◽  
...  

AbstractAdhesion strength in sputter-deposited Cu thin films on various types of barrier layers was investigated by scratch test. The barrier layers were Ta1-xNx with varied nitrogen concentration of 0, 0.2, 0.3, and 0.5. Microstructure observation by TEM indicated that each layer consists of mixed phases of β;-Ta, bcc-TaN0.1, hexagonal-TaN, and fcc-TaN, depending on the nitrogen concentration. A sulfur- containing amorphous phase was also present discontinuously at the Cu/barrier interfaces in all samples. Scratch test showed that delamination occurred at the Cu/barrier interface and that the overall adhesion strength increased with increasing the nitrogen concentration. A good correlation was found between the measured adhesion strength and the composing phases in the barrier layer.


Sign in / Sign up

Export Citation Format

Share Document