Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen

2017 ◽  
Vol 309 ◽  
pp. 301-308 ◽  
Author(s):  
Richard Krumpolec ◽  
Jan Čech ◽  
Jana Jurmanová ◽  
Pavol Ďurina ◽  
Mirko Černák
2014 ◽  
Vol 54 (6) ◽  
pp. 383-388 ◽  
Author(s):  
Jan Čech ◽  
Miroslav Zemánek ◽  
Pavel Sťahel ◽  
Hana Dvořáková ◽  
Mirko Černák

In presented work the influence of dielectric barrier thickness on the parameters of Diffuse Coplanar Surface Barrier Discharge was investigated. The discharge was operated at atmospheric pressure laboratory air. The electrical parameters of the system were studied both experimentally and using numerical simulations. The discharge pattern was studied as well using intensified CCD camera.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Čech ◽  
Jana Hanusová ◽  
Pavel Sťahel ◽  
Mirko Černák

AbstractDiffuse Coplanar Surface Barrier Discharge (DCSBD) is a novel type of atmospheric-pressure plasma source developed for high-speed large-area surface plasma treatments. The statistical behavior of microdischarges of DCSBD generated in artificial air atmosphere was studied using time-correlated optical and electrical measurements. Changes in behavior of microdischarges are shown for various electrode gap widths and input voltage amplitudes. They are discussed in the light of correlation of the number of microdischarges and the number of unique microdischarges’ paths per discharge event.The ‘memory effect’ was observed in the behavior of microdischarges and it manifests itself in a significant number of microdischarges reusing the path of microdischarges from previous half-period. Surprisingly this phenomenon was observed even for microdischarges of the same half-period of the discharge, where mechanisms other than charge deposition have to be involved. The phenomenon of discharge paths reuse is most pronounced for wide electrode


2014 ◽  
Vol 778-780 ◽  
pp. 759-762 ◽  
Author(s):  
Yasuhisa Sano ◽  
Hiroaki Nishikawa ◽  
Yuu Okada ◽  
Kazuya Yamamura ◽  
Satoshi Matsuyama ◽  
...  

Silicon carbide (SiC) is a promising semiconductor material for high-temperature, high-frequency, high-power, and energy-saving applications. However, because of the hardness and chemical stability of SiC, few conventional machining methods can handle this material efficiently. A plasma chemical vaporization machining (PCVM) technique is an atmospheric-pressure plasma etching process. We previously proposed a novel style of PCVM dicing using slit apertures for plasma confinement, which in principle can achieve both a high removal rate and small kerf loss, and demonstration experiments were performed using a silicon wafer as a sample. In this research, some basic experiments were performed using 4H-SiC wafer as a sample, and a maximum removal rate of approximately 10 μm/min and a narrowest groove width of 25 μm were achieved. We also found that argon can be used for plasma generation instead of expensive helium gas.


2019 ◽  
Vol 125 (6) ◽  
pp. 063304 ◽  
Author(s):  
Thi-Thuy-Nga Nguyen ◽  
Minoru Sasaki ◽  
Hidefumi Odaka ◽  
Takayoshi Tsutsumi ◽  
Kenji Ishikawa ◽  
...  

2015 ◽  
Vol 252 (11) ◽  
pp. 2602-2607 ◽  
Author(s):  
Alexander Kromka ◽  
Jan Čech ◽  
Halyna Kozak ◽  
Anna Artemenko ◽  
Tibor Ižák ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document