Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy

2021 ◽  
Vol 405 ◽  
pp. 126647
Author(s):  
S.S. Mirian Mehrian ◽  
M. Rahsepar ◽  
F. Khodabakhshi ◽  
A.P. Gerlich
2018 ◽  
Vol 59 (3) ◽  
pp. 475-481 ◽  
Author(s):  
Angga Afrinaldi ◽  
Toshifumi Kakiuchi ◽  
Shohei Nakagawa ◽  
Hiroshi Moritomi ◽  
Kazuhiro Kumabe ◽  
...  

Author(s):  
Abhishek Kumar ◽  
Aarush Sood ◽  
Nikhil Gotawala ◽  
Sushil Mishra ◽  
Amber Shrivastava

Author(s):  
Behrouz Bagheri ◽  
Amin Abdollahzadeh ◽  
Farzaneh Sharifi ◽  
Mahmoud Abbasi ◽  
Ahmad Ostovari Moghaddam

In this paper, the effect of mechanical vibration with reinforcement particles namely Silicon Carbide (SiC) on microstructure, mechanical properties, wear, and corrosion behaviors of aluminum alloy surface composites fabricated via friction stir processing (FSP) was investigated. The method was entitled friction stir vibration process (FSVP). The results revealed that recrystallized fine grains formed in all processing samples as a result of dynamic recovery and recrystallization, while samples processed in friction stir vibration processing resulted in better grain refinement in the stir zone than in conventional friction stir processing. Compared to conventional friction stir processing, in friction stir vibration processing, the hardness and tensile strength increased due to microstructure modification and better reinforcing distribution. From corrosion analysis, the corrosion resistance of the friction stir vibration processed samples showed a significant increase compared to the friction stir processed specimens. The wear results indicated that the wear resistance of friction stir vibration processed specimens is higher than friction stir processed specimens due to the development of smaller grains and a more homogenous distribution of the strengthening particles as the vibration is applied.


2019 ◽  
Vol 26 (06) ◽  
pp. 1850213 ◽  
Author(s):  
BEHZAD HASSANI ◽  
RUDOLF VALLANT ◽  
FATHALLAH KARIMZADEH ◽  
MOHAMMAD HOSSEIN ENAYATI ◽  
SOHEIL SABOONI ◽  
...  

The corrosion behavior of as-cast AZ91C magnesium alloy was studied by performing friction stir processing (FSP) and FSP followed by solution annealing and then aging. Phase analysis, microstructural characterization, potentiodynamic polarization test and immersion tests were carried out to relate the corrosion behavior to the samples microstructure. The microstructural observations revealed the breakage and dissolution of coarse dendritic microstructure as well as the coarse secondary [Formula: see text]-Mg[Formula: see text]Al[Formula: see text] phase which resulted in a homogenized and fine grained microstructure (15[Formula: see text][Formula: see text]m). T6 heat treatment resulted in an excessive growth and dispersion of the secondary phases in the microstructure of FSP zone. The potentiodynamic polarization and immersion tests proved a significant effect of both FSP and FSP followed by T6 on increasing the corrosion resistance of the cast AZ91C magnesium alloy. Improve in corrosion resistance after FSP was attributed to grain refinement and elimination of segregations and casting defects which makes more adhesive passive layer. Increase in volume fraction of precipitations after T6 heat treatment is determined to be the main factor which stabilizes the passive layer at different polarization values and is considered to be responsible for increasing the corrosion resistance.


2013 ◽  
Vol 747-748 ◽  
pp. 313-319 ◽  
Author(s):  
Fen Cheng Liu ◽  
Qiang Liu ◽  
Chun Ping Huang ◽  
Kun Yang ◽  
Cheng Gang Yang ◽  
...  

AZ80/Al composite plate was fabricated by means of friction stir processing (FSP) aimed at the improvement of corrosion resistance of magnesium alloy. The cross-section microstructure, surface morphology and corrosion resistance of the Al composite layer were investigated. The experiment results indicated that a dense composite Al layer with superfine and uniform grains was formed, and a few amount of intermetallic compounds existed in the area of Mg/Al interface. The bonding strength of AZ80 magnesium alloy substrate and 1060 pure Al layer was proved to be high which was resulted from the metallurgical bonding of FSP. Microhardness measurement showed the continuous changing of microhardness values from the outmost surface of composite Al layer to the magnesium alloy substrate. Results of electrochemical corrosion test of the composite plate in 5 wt.% NaCl solution showed the better protection effect of the composite Al layer on the magnesium alloy in a corrosion medium. Almost the same corrosion level on the whole corrosion surface was observed which indicated the highly uniform microstructure of the composite layer. It was also proved that the plain arches on the outmost surface of the composite Al layer had no influence on the corrosion resistance of composite Al layer.


2012 ◽  
Vol 706-709 ◽  
pp. 1823-1828 ◽  
Author(s):  
J.A. del Valle ◽  
P. Rey ◽  
D. Gesto ◽  
D. Verdera ◽  
Oscar A. Ruano

The effect of friction stir processing (FSP), on the microstructure and mechanical properties of a magnesium alloy AZ61 has been analyzed. This is a widely used wrought magnesium alloy provided in the form of rolled and annealed sheets with a grain size of 45 μm. The FSP was performed with an adequate cooling device in order to increase the heat extraction and reduce the processing temperature. The final microstructure showed a noticeable grain size refinement down to values close to 1.8 μm and an important change in texture. The change in texture favors basal slip during tensile testing leading to an increase of ductility and a decrease in yield stress. The stability of the grain size and the creep behavior at high temperatures were investigated. The optimum conditions for superplastic forming were determined; however, the presence of a large amount of cavities precludes the achievement of high superplastic elongations. Additionally, these results are compared with those obtained by severe hot rolling.


Sign in / Sign up

Export Citation Format

Share Document