Growth mechanism and thermal behavior of electroless Cu plating on short carbon fibers

Author(s):  
Yuan Ma ◽  
Lingjun Guo ◽  
Lehua Qi ◽  
Jia Sun ◽  
Jiancheng Wang ◽  
...  
2016 ◽  
Vol 2 (3) ◽  
pp. 47-57 ◽  
Author(s):  
S.S. Pesetskii ◽  
S.P. Bogdanovich ◽  
V.V. Dubrovskii ◽  
T.M. Sodyleva ◽  
V.N. Aderikha ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2015 ◽  
Vol 229 ◽  
pp. 115-122 ◽  
Author(s):  
Anita Olszówka-Myalska ◽  
Jerzy Myalski

The application of short carbon fibers in magnesium alloy AZ31 matrix composite fabrication by cold chamber pressure die casting was presented. A technological procedure of small-sized and complex-shaped composite casts manufacturing was shown. The microstructure of the composite was characterized as well as its mechanical properties, friction coefficient and wear resistance. The application of mechanical stirring of melted AZ31 alloy with short fibers and then AZ31-Cf suspension pressure die casting ensured obtaining casts with the reinforcing phase correctly distributed and well bonded with the matrix. Comparision of the AZ31-Cf composite with the AZ31 alloy properties, cast in the same conditions, revealed a considerable increase in bending strength and hardness, and some improvement of ductility and sliding friction parameters as a result of short carbon fibers application.


2015 ◽  
Vol 725-726 ◽  
pp. 943-948 ◽  
Author(s):  
Ivan Maniak ◽  
Boris Melnikov ◽  
Artem S. Semenov ◽  
Sergey Saikin

This work is devoted to the research of mechanical and strength properties of polymer composite material with short carbon fibers produced by injection molding technology. The material is PEEK90HMF20 with 20 % of carbon fibers mass fraction and based on polyether ether ketone (PEEK) polymer matrix. Mechanical and strength properties were researched on samples that had been cut from molded plates. A set of tension tests was performed and stress-strain diagrams of samples with different orientation in relation to the global direction of injection were obtained. Two-step homogenization procedure and pseudo-grains failure model were used to describe composite material behavior. The material model parameters were calibrated with experimental data by means of reverse-engineering procedure. Finite element simulation of tension tests was performed to check the quality of built model from the point of view of its ability to predict failure.


2018 ◽  
Vol 44 (16) ◽  
pp. 19345-19351 ◽  
Author(s):  
Jiangang Jia ◽  
Diqiang Liu ◽  
Changqi Gao ◽  
Genshun Ji ◽  
Tieming Guo

Sign in / Sign up

Export Citation Format

Share Document