Synthesis of strontium ferrite and its role in the removal of methyl orange, phenolphthalein and bromothymol blue from laboratory wastewater

2021 ◽  
pp. 101567
Author(s):  
Adewale Adewuyi ◽  
Claudio A. Gervasi ◽  
María V. Mirífico
The Analyst ◽  
2015 ◽  
Vol 140 (3) ◽  
pp. 771-778 ◽  
Author(s):  
Yuliya E. Silina ◽  
Tatyana A. Kuchmenko ◽  
Dietrich A. Volmer

The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study.


KIMIKA ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 19-33
Author(s):  
Marjorie Pearl Linde ◽  
Kevinilo Marquez

In this study, lignin was isolated from rice (Oryza sativa L.) husk using alkaline extraction method and was used as an adsorbent for aqueous solutions of methyl orange (MO) and bromothymol blue (BTB). The equilibrium removal rate of MO was found to be at 61.4%, with experimental equilibrium adsorbate uptake, qe, of 1.23 mg·g-1, achieved at 150 minutes contact time. For BTB, the equilibrium removal rate was found to be at 78.3%, with an experimental qe of 1.57 mg·g-1, achieved at 150 minutes contact time. Pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models were then used to investigate the kinetics of the adsorption process. Both MO and BTB on lignin were found to follow a PSO kinetic model, with rates of 6.84 x 10-3 g·mg-1·min-1 and 0.69 g·mg-1·min-1, respectively. Langmuir, Freundlich, Dubinin-Radushkevich (DR), Brunauer-Emmett-Teller (BET), Flory Huggins (FH), and Temkin adsorption isotherm models were then used to determine the appropriate equilibrium adsorption model for both substrates. Based on the calculations performed, the Temkin model best described the adsorptive removal of both MO and BTB. Based on the Temkin model, the adsorption processes of both MO and BTB were found to occur spontaneously, with equilibrium rate constants of 0.083 L·mg-1 and 0.012 L·mg-1, respectively.  


2015 ◽  
Vol 1 (2) ◽  
pp. 36-41
Author(s):  
Laura Cocheci ◽  
◽  
Ancuta-Corina Marcu ◽  
Paul Barvinschi ◽  
Aniela Pop

2018 ◽  
Vol 14 (2) ◽  
pp. 221-234
Author(s):  
Ahmed Namah Mohamed ◽  
◽  
Jafer Fahdel Odah ◽  
Haider Tawfiq Naeem

2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


2010 ◽  
Vol 31 (7) ◽  
pp. 797-802 ◽  
Author(s):  
Tianhua FU ◽  
Qianqian GAO ◽  
Fei LIU ◽  
Huajun DAI ◽  
Xingming KOU

Sign in / Sign up

Export Citation Format

Share Document