Edge effect at the microsphere colloidal array in near-field particle lithography on polymer surfaces

2022 ◽  
pp. 101735
Author(s):  
Andrey Afanasiev ◽  
Alexander Pikulin ◽  
Igor Ilyakov ◽  
Boris Shishkin ◽  
Nikita Bityurin
Author(s):  
Lin Zhang ◽  
Jiu Hui Wu

Abstract The macroscopic quantum effect is revealed to elaborate the extraordinary optical transmission (EOT) from a subwavelength thin microcavity based on the uncertainty property of the transmitted electromagnetic fields after the aperture. A critical radius is found in the thin microcavity under a certain incident electromagnetic wavelength. With the aperture radius varying, the transmitted field can be divided into three regimes: I. the macroscopic quantum regime when the aperture radius is less than the critical radius, in which the field edge effect occurs and EOT phenomenon is perfectly manifested; II. The wave-particle duality regime in the vicinity of the critical radius, in which the edge effect and diffraction phenomenon exist simultaneously; III. The wave regime when the aperture radius is greater than the critical radius, in which the near-field diffraction emerges. In addition, the influences of incident wavelength and microcavity thickness on EOT are also investigated. Our research have potential applications in advanced optical devices, such as light switch and optical manipulations.


Biofouling ◽  
2003 ◽  
Vol 19 (sup1) ◽  
pp. 99-104 ◽  
Author(s):  
Boris B Akhremitchev ◽  
Jason E Bemis ◽  
Sabah Al-Maawali ◽  
Yujie Sun ◽  
Larissa Stebounova ◽  
...  

2010 ◽  
Vol 96 (24) ◽  
pp. 243507 ◽  
Author(s):  
Jin Li ◽  
Wenwu Cao ◽  
Pinkuan Liu ◽  
Han Ding

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Zone-Ching Lin ◽  
Ming-Ho Chou

This study constructs a novel scanning near-field optical microscope (SNOM) fixed-amplitude simulative measuring model. It uses Al, Si, and O atoms to compose the probe tip and sample to construct the atomic model of SNOM simulative measuring model. It also applies Morse potential to calculate the atomic interaction force between tip and sample on the vibration theory of SNOM. This study compares the edge effect of surface profile between the simulated measurement with experimental measurement; it verifies that the nanoscale simulative measuring model for SNOM is reasonable and accurate. After analyzing the edge effect and error about the surface profile of standard sample by the SNOM simulated measurement, it is found that the factor influencing this surface profile appearance is mainly from the tip shapes. The investigation of the error analysis is referential in compensating the error of SNOM measurement and it can be used to further enhance the accuracy of SNOM measurement.


Author(s):  
L.H. Bolz ◽  
D.H. Reneker

The attack, on the surface of a polymer, by the atomic, molecular and ionic species that are created in a low pressure electrical discharge in a gas is interesting because: 1) significant interior morphological features may be revealed, 2) dielectric breakdown of polymeric insulation on high voltage power distribution lines involves the attack on the polymer of such species created in a corona discharge, 3) adhesive bonds formed between polymer surfaces subjected to such SDecies are much stronger than bonds between untreated surfaces, 4) the chemical modification of the surface creates a reactive surface to which a thin layer of another polymer may be bonded by glow discharge polymerization.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


Author(s):  
Quintin J. Lai ◽  
Stuart L. Cooper ◽  
Ralph M. Albrecht

Thrombus formation and embolization are significant problems for blood-contacting biomedical devices. Two major components of thrombi are blood platelets and the plasma protein, fibrinogen. Previous studies have examined interactions of platelets with polymer surfaces, fibrinogen with platelets, and platelets in suspension with spreading platelets attached to surfaces. Correlative microscopic techniques permit light microscopic observations of labeled living platelets, under static or flow conditions, followed by the observation of identical platelets by electron microscopy. Videoenhanced, differential interference contrast (DIC) light microscopy permits high-resolution, real-time imaging of live platelets and their interactions with surfaces. Interference reflection microscopy (IRM) provides information on the focal adhesion of platelets on surfaces. High voltage, transmission electron microscopy (HVEM) allows observation of platelet cytoskeletal structure of whole mount preparations. Low-voltage, high resolution, scanning electron microscopy allows observation of fine surface detail of platelets. Colloidal gold-labeled fibrinogen, used to identify the Gp Ilb/IIIa membrane receptor for fibrinogen, can be detected in all the above microscopies.


Sign in / Sign up

Export Citation Format

Share Document