Construction and Analysis of Nanoscale Simulative Measuring Model for Scanning Near-Field Optical Microscope

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Zone-Ching Lin ◽  
Ming-Ho Chou

This study constructs a novel scanning near-field optical microscope (SNOM) fixed-amplitude simulative measuring model. It uses Al, Si, and O atoms to compose the probe tip and sample to construct the atomic model of SNOM simulative measuring model. It also applies Morse potential to calculate the atomic interaction force between tip and sample on the vibration theory of SNOM. This study compares the edge effect of surface profile between the simulated measurement with experimental measurement; it verifies that the nanoscale simulative measuring model for SNOM is reasonable and accurate. After analyzing the edge effect and error about the surface profile of standard sample by the SNOM simulated measurement, it is found that the factor influencing this surface profile appearance is mainly from the tip shapes. The investigation of the error analysis is referential in compensating the error of SNOM measurement and it can be used to further enhance the accuracy of SNOM measurement.

2002 ◽  
Vol 81 (8) ◽  
pp. 1503-1505 ◽  
Author(s):  
D. A. Lapshin ◽  
V. S. Letokhov ◽  
G. T. Shubeita ◽  
S. K. Sekatskii ◽  
G. Dietler

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2021 ◽  
Vol 11 (12) ◽  
pp. 5415
Author(s):  
Aleksandr Gorst ◽  
Kseniya Zavyalova ◽  
Aleksandr Mironchev ◽  
Andrey Zapasnoy ◽  
Andrey Klokov

The article investigates the near-field probe of a special design to account for changes in glucose concentration. The probe is designed in such a way that it emits radiation in both directions from its plane. In this paper, it was proposed to modernize this design and consider the unidirectional emission of the probe in order to maximize the signal and reduce energy loss. We have done extensive research for both bidirectional and unidirectional probe designs. Numerical simulations and field experiments were carried out to determine different concentrations of glucose (0, 4, 5.3, 7.5 mmol/L). Numerical modeling of a unidirectional probe showed that the interaction of radiation generated by such a probe with a multilayer structure simulating a human hand showed a better result and high sensitivity compared to a bidirectional probe. Further, based on the simulation results, a phantom (physical model) of a human hand was recreated from layers with dielectric properties as close as possible to the properties of materials during simulation. The probe was constructed from a copper tube and matched both the geometric and physical parameters of the model. The experimental measurement was carried out using a vector network analyzer in the frequency range 2–10 GHz. The experimental measurement was carried out using a vector network analyzer in the frequency range 2–10 GHz for the unidirectional and bidirectional probes. Further, the results of the experiment were compared with the results of numerical simulation. According to the results of multiple experiments, it was found that the average deviation between the concentrations was 2 dB for a unidirectional probe and 0.4 dB for a bidirectional probe. Thus, the sensitivity of the unidirectional probe was 1.5 dB/(mmol/L) for the bidirectional one 0.3 dB/(mmol/L). Thus, the improved design of the near-field probe can be used to record glucose concentrations.


2020 ◽  
Vol 13 (6) ◽  
pp. 697-706
Author(s):  
Yuhong Wang ◽  
Kecheng Zhao ◽  
Fangjin Li ◽  
Qi Gao ◽  
King Wai Chiu Lai

AbstractThe microscopic surface features of asphalt binders are extensively reported in existing literature, but relatively fewer studies are performed on the morphology of asphaltene microstructures and cross-examination between the surface features and asphaltenes. This paper reports the findings of investigating six types of asphalt binders at the nanoscale, assisted with atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM). The surface features of the asphalt binders were examined by using AFM before and after being repetitively peeled by a tape. Variations in infrared (IR) absorbance at the wavenumber around 1700 cm−1, which corresponds to ketones, were examined by using an infrared s-SNOM instrument (scattering-type scanning near-field optical microscope). Thin films of asphalt binders were examined by using STEM, and separate asphaltene particles were cross-examined by using both STEM and AFM. In addition, connections between the microstructures and binder’s physicochemical properties were evaluated. The use of both microscopy techniques provide comprehensive and complementary information on the microscopic nature of asphalt binders. It was found that the dynamic viscosities of asphalt binders are predominantly determined by the zero shear viscosity of the corresponding maltenes and asphaltene content. Limited samples also suggest that the unique bee structures are likely related to the growth of asphaltene content during asphalt binder aging process, but more asphalt binders from different crude sources are needed to verify this finding.


2021 ◽  
Vol 118 (4) ◽  
pp. 041103
Author(s):  
Xiao Guo ◽  
Karl Bertling ◽  
Aleksandar D. Rakić

1996 ◽  
Vol 3 (6) ◽  
pp. A463-A467
Author(s):  
Rajagopalan Uma Maheswari ◽  
Shuji Mononobe ◽  
Hitoshi Tatsumi ◽  
Yoshifumi Katayama ◽  
Motoichi Ohtsu

Sign in / Sign up

Export Citation Format

Share Document