Multi-operator continuous ant colony optimisation for real world problems

Author(s):  
Jing Liu ◽  
Sreenatha Anavatti ◽  
Matthew Garratt ◽  
Hussein Abbass
2015 ◽  
Vol 9 ◽  
pp. 193-203
Author(s):  
Mirzakhmet SYZDYKOV ◽  
◽  
Madi UZBEKOV ◽  

2021 ◽  
Vol 13 (10) ◽  
pp. 5491
Author(s):  
Melissa Robson-Williams ◽  
Bruce Small ◽  
Roger Robson-Williams ◽  
Nick Kirk

The socio-environmental challenges the world faces are ‘swamps’: situations that are messy, complex, and uncertain. The aim of this paper is to help disciplinary scientists navigate these swamps. To achieve this, the paper evaluates an integrative framework designed for researching complex real-world problems, the Integration and Implementation Science (i2S) framework. As a pilot study, we examine seven inter and transdisciplinary agri-environmental case studies against the concepts presented in the i2S framework, and we hypothesise that considering concepts in the i2S framework during the planning and delivery of agri-environmental research will increase the usefulness of the research for next users. We found that for the types of complex, real-world research done in the case studies, increasing attention to the i2S dimensions correlated with increased usefulness for the end users. We conclude that using the i2S framework could provide handrails for researchers, to help them navigate the swamps when engaging with the complexity of socio-environmental problems.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 534
Author(s):  
F. Thomas Bruss

This paper presents two-person games involving optimal stopping. As far as we are aware, the type of problems we study are new. We confine our interest to such games in discrete time. Two players are to chose, with randomised choice-priority, between two games G1 and G2. Each game consists of two parts with well-defined targets. Each part consists of a sequence of random variables which determines when the decisive part of the game will begin. In each game, the horizon is bounded, and if the two parts are not finished within the horizon, the game is lost by definition. Otherwise the decisive part begins, on which each player is entitled to apply their or her strategy to reach the second target. If only one player achieves the two targets, this player is the winner. If both win or both lose, the outcome is seen as “deuce”. We motivate the interest of such problems in the context of real-world problems. A few representative problems are solved in detail. The main objective of this article is to serve as a preliminary manual to guide through possible approaches and to discuss under which circumstances we can obtain solutions, or approximate solutions.


2021 ◽  
Vol 52 (1) ◽  
pp. 12-15
Author(s):  
S.V. Nagaraj

This book is on algorithms for network flows. Network flow problems are optimization problems where given a flow network, the aim is to construct a flow that respects the capacity constraints of the edges of the network, so that incoming flow equals the outgoing flow for all vertices of the network except designated vertices known as the source and the sink. Network flow algorithms solve many real-world problems. This book is intended to serve graduate students and as a reference. The book is also available in eBook (ISBN 9781316952894/US$ 32.00), and hardback (ISBN 9781107185890/US$99.99) formats. The book has a companion web site www.networkflowalgs.com where a pre-publication version of the book can be downloaded gratis.


Sign in / Sign up

Export Citation Format

Share Document