In vitro and in silico anticancer effect of combined crude acetone extracts of Plumbago zeylanica L., Limonia acidissima L. and Artocarpus heterophyllus Lam

Synergy ◽  
2017 ◽  
Vol 5 ◽  
pp. 15-23 ◽  
Author(s):  
Gowri Shankar Krishnan ◽  
Divya Sebastian ◽  
Ignacimuthu Savarimuthu ◽  
James Antony Poovathumkal ◽  
Albin T. Fleming
2021 ◽  
Vol 83 (5) ◽  
Author(s):  
S. S. Jaganathan ◽  
Gloria Jemmi Christobel Robinson ◽  
Abirami Padmanaban ◽  
Shila Samuel ◽  
V. Radhakrishnan

Gene Reports ◽  
2021 ◽  
pp. 101393
Author(s):  
V. Vanitha ◽  
S. Vijayakumar ◽  
S. Prabhu ◽  
M. Nilavukkarasi ◽  
V.N. Punitha ◽  
...  
Keyword(s):  

Author(s):  
Sudha Vijayan ◽  
Chitra Loganathan ◽  
Penislusshiyan Sakayanathan ◽  
Palvannan Thayumanavan

Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2019 ◽  
Author(s):  
Filip Fratev ◽  
Denisse A. Gutierrez ◽  
Renato J. Aguilera ◽  
suman sirimulla

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line studies, using a newly designed virtual screening protocol that combines structure-based pharmacophore and docking screens. Taking together with the biological data, the combination of structure based pharamcophore and docking methods demonstrated reasonable success rate in identifying new inhibitors (60-70%) proving the success of aforementioned approach. A detail analysis of the ligand-protein interactions was performed explaining observed activities.<br>


Author(s):  
Joshi Vedamurthy ◽  
Shivakumar Inamdar ◽  
Ankit Acharya ◽  
Rajesh Kowti

In this project, in vitro absorption enhancement activity of P-gp substrates Fexofenadine (Fx) and Ciprofloxacin (Cp) were evaluated in everted rat gut sac model and Caco-2 cell lines. Verapamil was used as P-gp inhibitor. Piper betel, Trachyspermum ammi, Plumbago zeylanica, Trikatu, Moringaoleifera, Murraya koenigii,  Ferulafoitida  Zingiber officinale, Cheilocostus speciosus, Capsicum frutescens Operculina turpethum Holarrhena antidysenterica Mesuaferrea, Tinospora cordifolia,  and Picrorhiza kurroa, were selected and extracted with 99% alcohol and fresh juices of Citrus limon, Punica granatum seeds were also studied. In-vitro studies depicted that Fexofenadine and Ciprofloxacin absorption was increased greater than 20% in the presence of Operculinaturpethum, Capsicum frutescens, Holarrhena Antidysenterica, Tinospora cordifolia, Trikatu, Trachyspermum ammi, Plumbago zeylanica. The flux of the ciprofloxacin transport was in the range of 9-23 mcg/min and Papp         2.6 × 10-5 cm/sec to 4.1 × 10-5  cm/sec whereas Fexofenadine flux was in the range of 2-7.7 mcg/min and Papp 4.16 × 10–6 cm/sec to 1.62 ×       10-5 cm/sec.  In vitro antimicrobial activity of ciprofloxacin on selected microbes in presence of extracts also depicted synergistic activity. Histological studies revealed that there is no significant variation observed in the isolated sac in presence of the extracts. CaCo2 cell lines studies showed that, formulation enhanced the absorption of fexofenadine greater than 50%. Tablets were prepared and evaluated using the plant extracts which yielded >20% absorption enhancement of the substrates. In conclusion, tablet formulation containing the alcoholic extracts of Trachyspermum ammi, Plumbago zylanicum, Capsicum frutescens, Operculina turpethum, Holarrhena Antidysenterica, Tinospora cordifolia and Trikatu can act as an absorption enhancer for fexofenadine and ciprofloxacin. The mechanism of action of these herbs could be due to    P-gp inhibition. Further clinical studies are needed to prove its efficacy in humans.     


Sign in / Sign up

Export Citation Format

Share Document