A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs- titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluids

2020 ◽  
Vol 268 ◽  
pp. 116501 ◽  
Author(s):  
Ahmadreza Boroomandpour ◽  
Davood Toghraie ◽  
Mohammad Hashemian
2021 ◽  
Vol 72 (1) ◽  
pp. 18-24
Author(s):  
Noor Sabeeh Majeed ◽  
Hussein A. Alabdly ◽  
Hussam Nadum Abdalraheem Al Ani ◽  
Dumitru Pascu ◽  
Aurelia Cristina Nechifor

Stability of nanofluids is one of the most important factors to ensure the most benefit of the properties of nanoparticles. Zinc oxide was used in the research with concentration between (0.2-1) wt. % with ethylene glycol base fluid. The stability of ZnO nanofluid was enhanced by adding two types of surfactants Tx-100 and Gum Arabic with concentration of (0.1-0.5) vol. % to stabilize the ZnO nanoparticles in the base fluid. The results showed that the Gum Arabic surfactant led to more stable fluid than that of Tx-100; this was shown from zeta potential and UV spectroscopy measurements. The thermal conductivity coefficient was also measured, and the results showed that the thermal conductivity increased with adding surfactant than without using a stabilizer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. C. Mbambo ◽  
M. J. Madito ◽  
T. Khamliche ◽  
C. B. Mtshali ◽  
Z. M. Khumalo ◽  
...  

Abstract We report on the synthesis and thermal conductivity of gold nanoparticles (AuNPs) decorated graphene nanosheets (GNs) based nanofluids. The GNs-AuNPs nanocomposites were synthesised using a nanosecond pulsed Nd:YAG laser (wavelength = 1,064 nm) to ablate graphite target followed by Au in ethylene glycol (EG) base fluid to obtain GNs-AuNPs/EG hybrid nanofluid. The characterization of the as-synthesised GNs-AuNPs/EG hybrid nanofluid confirmed a sheet-like structure of GNs decorated with crystalline AuNPs with an average particle diameter of 6.3 nm. Moreover, the AuNPs appear smaller in the presence of GNs which shows the advantage of ablating AuNPs in GNs/EG. The thermal conductivity analysis in the temperature range 25–45 °C showed that GNs-AuNPs/EG hybrid nanofluid exhibits an enhanced thermal conductivity of 0.41 W/mK compared to GNs/EG (0.35 W/mK) and AuNPs/EG (0.39 W/mK) nanofluids, and EG base fluid (0.33 W/mK). GNs-AuNPs/EG hybrid nanofluid displays superior enhancement in thermal conductivity of up to 26% and this is due to the synergistic effect between AuNPs and graphene sheets which have inherent high thermal conductivities. GNs-AgNPs/EG hybrid nanofluid has the potential to impact on enhanced heat transfer technological applications. Also, this work presents a green synthesis method to produce graphene-metal nanocomposites for various applications.


2019 ◽  
Vol 70 (11) ◽  
pp. 3908-3912
Author(s):  
Altayyeb Alfaryjat ◽  
Mariana Florentina Stefanescu ◽  
Alexandru Dobrovicescu

In this work, the effects of nanoparticles concentration on the density, thermal conductivity, and viscosity of Al2O3, CeO2 and ZrO2 suspended in 20% of ethylene glycol (EG) and 80% of distilled water (DW) is experimentally investigated. By using two step method, the nanofluid samples are provided at different concentrations, including 0.5%, 1% and 2 %. Visual observation of the nanofluid samples showed that CeO2-EG/DW and ZrO2-EG/DW have higher stability for one week more that Al2O3-EG/DW. The results indicate that the density, viscosity and thermal conductivity of the nanofluids increased with increasing the nanoparticles concentration. The highest enhancement of the thermal conductivity was found to be 9.6% for 2% concentration of CeO2-EG/DW at 25�C. Al2O3-EG/DW shows the lowest density and viscosity between all types of the nanofluids.


Author(s):  
Anwar Ilmar Ramadhan ◽  
Wan Hamzah Azmi ◽  
Rizalman Mamat

Background: Research has been focused on improving the thermal properties of single nanofluid components for recent of years. Therefore, hybrid nanofluids or composites have been developed to improve heat transfer performance. Stability and thermal conductivity of the Al2O3-TiO2-SiO2 nanoparticles suspended in the fluid base of water (W) and ethylene glycol (EG) mixture with volume ratio of 60:40. Methods: Experiments were tri-hybrid nanofluid stability was investigated for volume concentration of 0.5 ~ 3.0%, and temperature conditions from 30 to 70 °C for thermal conductivity measurements using a KD2 Pro Thermal Properties Analyzer. The experimental results show that the tri-hybrid nanofluid stability analysis was performed using a stable UVVis method for up to 30 days after preparation with 10 hour sonication time. Results: Comparison of data concentration ratios with sedimentation for single, hybrid, and tri-hybrid nanofluids yielding a stable tri-hybrid nanofluid with 80-90% value. Evaluation of zeta potential for tri-hybrid nanofluids yielded 63.72 mV in excellent stability classification. Sedimentation of this visual observation is influenced by the gravity of the movement of particles in the tube after 30 days. Conclusion: The highest thermal conductivity for tri-hybrid nanofluids was obtained at 3.0% and a maximum increase of up to 27% higher than that of the basic fluid (EG/W). Tri-hybrid nanofluids with a concentration of 0.5% gave the lowest effective thermal conductivity of 13.4% at 70 °C.


Sign in / Sign up

Export Citation Format

Share Document