The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing

Talanta ◽  
2020 ◽  
Vol 208 ◽  
pp. 120347 ◽  
Author(s):  
Haimei Shi ◽  
Jiaojiao Sun ◽  
Renru Han ◽  
Chuanfan Ding ◽  
Fupin Hu ◽  
...  
1996 ◽  
Vol 89 (4) ◽  
pp. 1145-1155
Author(s):  
JACQUES WALRAND ◽  
GHISLAIN BLANQUET ◽  
JEAN-FRANCOIS BLAVIER ◽  
HARALD BREDOHL ◽  
IWAN DUBOIS

2021 ◽  
Vol 9 (4) ◽  
pp. 853
Author(s):  
Miriam Cordovana ◽  
Norman Mauder ◽  
Markus Kostrzewa ◽  
Andreas Wille ◽  
Sandra Rojak ◽  
...  

Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes.


1997 ◽  
Vol 181 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A. Farkhsi ◽  
H. Bredohl ◽  
I. Dubois ◽  
F. Remy ◽  
A. Fayt

2020 ◽  
Author(s):  
Huayan Yang ◽  
Fangling Wu ◽  
Fuxin Xu ◽  
Keqi Tang ◽  
Chuanfan Ding ◽  
...  

Abstract Fourier transform infrared (FT-IR) spectroscopy is a label-free and highly sensitive technique that provides complete information on the chemical composition of biological samples. The bacterial FT-IR signals are extremely specific and highly reproducible fingerprint-like patterns, making FT-IR an efficient tool for bacterial typing and identification. Due to the low cost and high flux, FT-IR has been widely used in hospital hygiene management for infection control, epidemiological studies, and routine bacterial determination of clinical laboratory values. However, the typing and identification accuracy could be affected by many factors, and the bacterial FT-IR data from different laboratories are usually not comparable. A standard protocol is required to improve the accuracy of FT-IR-based typing and identification. Here, we detail the principles and procedures of bacterial typing and identification based on FT-IR spectroscopy, including bacterial culture, sample preparation, instrument operation, spectra collection, spectra preprocessing, and mathematical data analysis. Without bacterial culture, a typical experiment generally takes <2 h.


FEBS Letters ◽  
1994 ◽  
Vol 339 (1-2) ◽  
pp. 151-154 ◽  
Author(s):  
S.I. Allakhverdiev ◽  
A. Ahmed ◽  
H.-A. Tajmir-Riahi ◽  
V.V. Klimov ◽  
R. Carpentier

2012 ◽  
Vol 9 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Hamid Najib ◽  
Siham Hmimou ◽  
Hicham Msahal

The high-resolution Fourier transform infrared spectrum of nitrogen trifluoride NF3has been studied in the v1+ v4perpendicular band region around 1523 cm−1. All experimental data have been refined applying various reduction forms of the effective rovibrational Hamiltonian developed for an isolated degenerate state of a symmetric top molecule. The v1= v4= 1 excited state of the14NF3oblate molecule was treated with models taking into account ℓ- andk-type intravibrational resonances. Parameters up to sixth order have been accurately determined and the unitary equivalence of the derived parameter sets in different reductions was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document