Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS

Talanta ◽  
2021 ◽  
pp. 122774
Author(s):  
Wenjing Guo ◽  
Zhangsheng Shi ◽  
Jing Zhang ◽  
Ting Zeng ◽  
Yu He ◽  
...  
2021 ◽  
Author(s):  
Shicong Jia ◽  
yanqiang zhou ◽  
Jianmin Li ◽  
Bolin Gong ◽  
Shujuan Ma ◽  
...  

The restricted access media magnetic molecularly imprinted polymers (RAM-MMIPs) were prepared as magnetic solid phase extraction (M-SPE) material by reversible addition fragmentation chain transfer (RAFT) technique. The resulting RAM-MMIPs had...


Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 22
Author(s):  
Pei Chen ◽  
Xiaoman Li ◽  
Xuemin Yan ◽  
Minglei Tian

(1) Background: ZIF-67 is one of the most intriguing metal–organic frameworks already applied in liquid adsorption. To increase its adsorption performance, dual ionic liquids were immobilized on ZIF-67 in this research; (2) Methods: The obtained sorbent was used to adsorb aristolochic acid I (AAI) in standard solutions. Then, the sorbent was applied in solid-phase extraction to remove AAI from Fibraurea Recisa Pierre extracted solution. (3) Results: By analyzing the adsorption models, the highest adsorption capacity of immobilized sorbent (50.9 mg/g) was obtained at 25 °C within 120 min. In the SPE process, 0.02 mg of AAI was removed per gram of herbal plant, the adequate recoveries were in the range of 96.2–100.0%, and RSDs were 3.5–4.0%; (4) Conclusions: The provided experimental data revealed that ZIF-67@EIM-MIM was an excellent potential sorbent to adsorb and remove AAI from herbal plant extract, and the successful separation indicated that this sorbent could be an ideal material for the pretreatment of herbal plants containing AAI.


2021 ◽  
Vol 2 (3) ◽  
pp. 963-973
Author(s):  
Daniel Garcia-Osorio ◽  
Helton P. Nogueira ◽  
Josué M. Gonçalves ◽  
Sergio H. Toma ◽  
Sergio Garcia-Segura ◽  
...  

(a) Cubic structures formed by CTAB above critical micellar concentration used as a template to generate highly ordered mesoporous silica. (b) Photo showing the magnetic recovery of MCM48/SPION/C8 nanocomposite in 60 s.


Sign in / Sign up

Export Citation Format

Share Document