The relationship between crust-lithosphere structures and seismicity on the southeastern edge of the Tibetan Plateau

2020 ◽  
Vol 776 ◽  
pp. 228300
Author(s):  
Xingqian Xu ◽  
Lijun Su ◽  
Junzhe Liu ◽  
Wanhuan Zhou ◽  
Aimin Gong ◽  
...  
2013 ◽  
Vol 14 (4) ◽  
pp. 227-234 ◽  
Author(s):  
Xiangde Xu ◽  
Chungu Lu ◽  
Yihui Ding ◽  
Xiaohui Shi ◽  
Yudi Guo ◽  
...  

2020 ◽  
Author(s):  
Genhou Sun ◽  
Zeyong Hu ◽  
Yaoming Ma ◽  
Zhipeng Xie ◽  
Jiemin Wang ◽  
...  

Abstract. The Local land atmosphere coupling (LoCo) focuses on the interactions between soil conditions, surface fluxes, planetary boundary layer (PBL) growth, and the formations of convective clouds and precipitations. Study of LoCo over the Tibetan Plateau (TP) is of great significance for understanding TP's role in the Asian Water Tower. A series of real-case simulations using the Weather Research and Forecasting Model (WRF) with different combinations of land surface models (LSM) schemes and PBL schemes has been carried out to investigate the LoCo characteristics over a typical underlying surface in the central TP in rainy season. The LoCo characteristics in the study area are analyzed by applying a mixing diagram to the simulation results. The analysis indicates that the WRF simulations using the Noah with BouLac, MYNN, and YSU produce closer results to the observation in terms of curves of Cp*θ and Lv*q, surface fluxes (Hsfc and LEsfc), entrainment fluxes (Hent and LEent) at site BJ/Nagqu than those using the CLM with BouLac, MYNN, and YSU. The frequency distributions of Hsfc, LEsfc, Hent, and LEent in the study area confirm this result. The spatial distributions of simulated Hsfc, LEsfc, Hent, and LEent using WRF with Noah and BouLac suggest that the spatial distributions of Hsfc and LEsfc in the study area are consistent with that of soil moisture, but the spatial distributions of Hent and LEent are quite different from that of soil moisture. A close examination of the relationship between entrainment fluxes and cloud water content (QCloud) reveals that the grids with small Hent and large LEent tend to have high QCloud and Hsfc, suggesting that high Hsfc is conductive to convective cloud formation, which leads to small Hent and large LEent. Sensitivity analysis of LoCo to the soil moisture at site BJ/Nagqu indicates that on a sunny day, an increase in soil moisture leads to an increase in LEsfc but decreases in Hsfc, Hent, and LEent. The sensitivity of the relationship between simulated maximum daytime PBL height (PBLH) and mean daytime evapotranspiration (EF) in the study area to soil moisture indicates that the rate at which the maximum daytime PBLH decreases with the mean EF increase as the initial soil moisture goes up. The analysis of simulated Hsfc, LEsfc, Hent, and LEent under different soil moisture conditions reveals that the frequency of Hent ranging from 80 to 240 W/m2 and the frequency of LEent ranging from −240 to −90 W/m2 both increase as the initial soil moisture increases. Coupled with the changes in QCloud, the changes in Hent and LEent as the initial soil moisture increases indicate that the rise in soil moisture leads to an increase in the cloud amount but a decrease in QCloud.


Author(s):  
Christopher Bell

This book is about two immortals whose friendship has spanned nearly five hundred years across the Tibetan plateau and beyond. The first immortal is the Dalai Lama, the emanation of a bodhisattva, an enlightened being who voluntarily takes rebirth in the world to benefit sentient beings. The second immortal is a wrathful god named Pehar, who has possessed the Nechung Oracle since the sixteenth century. This book is the first to examine the relationship between these two monolithic figures, which strengthened in the seventeenth century during the reign of the Fifth Dalai Lama (1617–1682). This study is also the first extensive examination of the famed Nechung Oracle and his institution. In the seventeenth century, the protector deity Pehar and his oracle at Nechung Monastery were state-sanctioned by the nascent Tibetan government, becoming the head of an expansive pantheon of worldly deities assigned to protect the newly unified country. While the Fifth Dalai Lama and his government endorsed Pehar as part of a larger unification project, the governments of later Dalai Lamas continued to expand the deity’s influence, and by extension their own, by ritually establishing Pehar at monasteries and temples around Lhasa and across Tibet. Pehar’s cult at Nechung Monastery came to embody the Dalai Lama’s administrative control in a mutually beneficial relationship of protection and prestige, the effects of which continue to reverberate within Tibet and among the Tibetan exile community today.


CICTP 2016 ◽  
2016 ◽  
Author(s):  
Yuan Zhang ◽  
Yu-Long He ◽  
Xiao-Duan Sun ◽  
Yi-Xin Chen

2007 ◽  
Vol 17 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Mingjun Ding ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Wei Zhang ◽  
Zhaofeng Wang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Dan Chen ◽  
Sulan Nan ◽  
Ge Liu ◽  
Changyan Zhou ◽  
Renrui Shi ◽  
...  

We investigated the relationship between the spring tropospheric temperature over the Tibetan Plateau (TPT) and summer precipitation in eastern China on an interannual timescale using the monthly mean ERA-Interim reanalysis dataset, the HadISST dataset and the daily mean precipitation dataset for China. We found that there is a significant positive correlation between the spring TPT and summer precipitation in the North China−Hetao region. The relationship is manifested in the context of the East Asia–Pacific pattern teleconnection. In the high spring TPT index years, the geopotential height anomalies over East Asia and the western North Pacific present a negative phase of the East Asia–Pacific pattern teleconnection in the subsequent summer. This circulation pattern is beneficial for the water vapor transport from the western Pacific to inland, which further transport to the North China−Hetao region from the Yangtze River–Yellow rivers region. Anomalous upward motion occurs in the North China–Hetao region, which increases precipitation. The East Asian subtropical westerly jet shifts further north and the South Asian high weakens and shrinks westward. These conditions all favor an increase in precipitation over the North China–Hetao region. The spring TPT plays an important part in the prediction of summer precipitation in the North China−Hetao region. The improvement in the use of the spring TPT to predict summer precipitation in the North China–Hetao region is examined by comparing the prediction equations with and without the prediction factor of the spring TPT on the basis of the sea surface temperatures in key regions. After considering the impact of the spring TPT, the explanatory variance of the prediction equation for precipitation in the North China–Hetao region increases by 17.3%.


2022 ◽  
pp. 1-45
Author(s):  
Xiang Han ◽  
Haikun Zhao ◽  
Philip J. Klotzbach ◽  
Liguang Wu ◽  
Graciela B. Raga ◽  
...  

Abstract This study finds an enhanced relationship in recent years between January–March eastern Tibetan Plateau snow depth (TPSD) and the frequency of rapidly intensifying tropical cyclones (RITCs) over the western Northern Pacific (WNP) during the following peak TC season (July–November). The correlation between TPSD and RITCs is significant during 2000–2014 but was insignificant from 1979–1999. During 2000–2014, when TPSD increases, there is an enhanced low-level anomalous anticyclone over the subtropical eastern North Pacific mainly due to the combined effect of advection and dynamics of the climatological prevailing westerly jet. Northeasterly wind anomalies are observed on the flank of the anticyclonic circulation anomaly, favoring anomalously cool sea surface temperature (SST). These anomalies lead to an anomalous pattern similar to the Pacific meridional mode (PMM), via a wind-evaporation feedback and cold advection. A Gill-type Rossby response to the PMM-like negative phase results in an anticyclonic circulation anomaly over the WNP, suppressing RITCs during 2000–2014. A nearly opposite circulation anomaly occurred when TPSD was lower during 2000–2014. There is a weak relationship between TPSD and RITCs, due to the lack of a link between TPSD and the PMM-like pattern from 1979–1999. Decadal changes in the relationship between TPSD and RITCs are mainly due to the meridional displacement of the prevailing westerly jet which may be in response to decadal-to-multi-decadal variability of SST anomalies. These changes then result in changes in the relationship between January–March TPSD and the PMM-like pattern.


Sign in / Sign up

Export Citation Format

Share Document