Probing the relationship between electrical conductivity and creep through upper crustal fluids along the western part of the North Anatolian Fault with three-dimensional magnetotellurics

2020 ◽  
Vol 791 ◽  
pp. 228561
Author(s):  
Mustafa Karaş ◽  
Sabri Bülent Tank ◽  
Yasuo Ogawa ◽  
Naoto Oshiman ◽  
Masaki Matsushima ◽  
...  
Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 873-880
Author(s):  
Marzieh Mokarram ◽  
Dinesh Sathyamoorthy

Abstract. Soil genesis is highly dependent on landforms as they control the erosional processes and the soil physical and chemical properties. The relationship between landform classification and electrical conductivity (EC) of soil and water in the northern part of Meharloo watershed, Fars province, Iran, was investigated using a combination of a geographical information system (GIS) and a fuzzy model. The results of the fuzzy method for water EC showed 36.6 % of the land to be moderately land suitable for agriculture; high, 31.69 %; and very high, 31.65 %. In comparison, the results of the fuzzy method for soil EC showed 24.31 % of the land to be as not suitable for agriculture (low class); moderate, 11.78 %; high, 25.74 %; and very high, 38.16 %. In total, the land suitable for agriculture with low EC is located in the north and northeast of the study area. The relationship between landform and EC shows that EC of water is high for the valley classes, while the EC of soil is high in the upland drainage class. In addition, the lowest EC levels for soil and water are in the plains class.


1998 ◽  
Vol 35 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Mark D Behn ◽  
J Dykstra Eusden, Jr. ◽  
John A Notte III

The Sebago pluton is a two-mica granite that intruded the metasedimentary rocks of the Central Maine Terrane around 292 Ma. In recent years, geologists have raised an increasing number of questions related to the overall thickness of the Sebago pluton and the position of its subsurface contact with the underlying metasedimentary rocks. Past studies have shown the Sebago pluton to be a thin, 1-2 km thick, subhorizontal sheet dipping 3° to the northeast. This study examines anomalies in the Earth's gravitational field related to the southern portion of the Sebago pluton, specifically to determine the thickness of the pluton and to locate the subsurface contact between the pluton and the underlying metasedimentary rocks. A three-dimensional model shows the thickest portions of the pluton (~1.8 km) to occur at the bottom of a bowl hape along the southwestern contact. Moreover, the model shows the pluton to thin toward the northern and eastern regions of the study area, where the average thickness is less than 0.5 km. The pluton appears to extend southward below the cover of the metasedimentary rocks along the southwestern contact. Thus, contrary to previous models, the Sebago pluton is not a northeasterly dipping sheet of uniform thickness, but rather an arched sheet with an irregular thickness extending beneath the metasedimentary rocks along both its northern and southern contacts. Based on this new geometry, either the relationship of the pluton to the surrounding metamorphic zones must be modified, or the possibility must be considered that the Sebago pluton is actually a composite batholith, composed of a younger (Permian) granite to the north and an older (Carboniferous) granite to the south.


2016 ◽  
Vol 371 (1691) ◽  
pp. 20150227 ◽  
Author(s):  
Allison Y. Hsiang ◽  
Leanne E. Elder ◽  
Pincelli M. Hull

With a glance, even the novice naturalist can tell you something about the ecology of a given ecosystem. This is because the morphology of individuals reflects their evolutionary history and ecology, and imparts a distinct ‘look’ to communities—making it possible to immediately discern between deserts and forests, or coral reefs and abyssal plains. Once quantified, morphology can provide a common metric for characterizing communities across space and time and, if measured rapidly, serve as a powerful tool for quantifying biotic dynamics. Here, we present and test a new high-throughput approach for analysing community shape in the fossil record using semi-three-dimensional (3D) morphometrics from vertically stacked images (light microscopic or photogrammetric). We assess the potential informativeness of community morphology in a first analysis of the relationship between 3D morphology, ecology and phylogeny in 16 extant species of planktonic foraminifera—an abundant group in the marine fossil record—and in a preliminary comparison of four assemblages from the North Atlantic. In the species examined, phylogenetic relatedness was most closely correlated with ecology, with all three ecological traits examined (depth habitat, symbiont ecology and biogeography) showing significant phylogenetic signal. By contrast, morphological trees (based on 3D shape similarity) were relatively distantly related to both ecology and phylogeny. Although improvements are needed to realize the full utility of community morphometrics, our approach already provides robust volumetric measurements of assemblage size, a key ecological characteristic.


2016 ◽  
Author(s):  
Marzieh Mokarram ◽  
Dinesh Sathyamoorthy

Abstract. In this research, the relationship between classes of landform, and electrical conductivity (EC) of soil and water in the Shiraz Plain, Fars province Iran was investigated using a combination of geographical information system (GIS) and fuzzy model. The results of the fuzzy method for water EC showed that 36.6 % of the land to be moderately land suitable for agriculture; high, 31.69 %; and very high, 31.65 %. In comparison, the results of the fuzzy method for soil EC showed that 24.31 % of the land to be as not suitable for agriculture (low class); moderate, 11.78 %; high, 25.74 %; and very high, 38.16 %. In the total, the land suitable for agriculture with low EC is located in the north and northeast of the study area. The relationship between landform and EC shows that EC of water is high for the valley classes, while EC of soil is high in the upland drainage class. In addition, the lowest EC for soil and water are in the plain small class.


2021 ◽  
Vol 896 ◽  
pp. 39-44
Author(s):  
Yuan Zheng Luo ◽  
You Qi Wan ◽  
Wei Hong

In this paper, we developed a three-dimensional percolation model to investigate the effects of the concentration and morphology of CNTs (carbon nanotubes) on the electrical conductivity of the nanocomposites. In the model, we judged the connections between CNTs by range search algorithm based on KD-Tree structure. At the same time, DIJKSTRA-Melissa algorithm was applied to efficiently find all the conductive paths instead of finding conductive network in traditional methods. From the simulation results, CNTs with higher aspect ratio were easier to form the conductive network. In a certain range of CNT’s concentration, the relationship between the conductivity of the conductive network and the carbon nanotubes was basically consistent with the classical percolation theory. To verify our simulation model, the morphological, electrical properties of Carbon nanotubes (CNTs)/poly(dimethyl siloxane) (PDMS) nanocomposites with different aspect ratio (AR) of MWNTs were systematically studied. In conclusion, these unique advantageous properties could be exploited to suggest potential applications of artificial electronic skin.


Sign in / Sign up

Export Citation Format

Share Document