Activated factor VIII-mimicking effect by emicizumab on thrombus formation in type 2N von Willebrand disease under high shear flow conditions

2021 ◽  
Vol 198 ◽  
pp. 7-16
Author(s):  
Hiroaki Yaoi ◽  
Yasuaki Shida ◽  
Takehisa Kitazawa ◽  
Midori Shima ◽  
Keiji Nogami
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1483-1483
Author(s):  
Yasuaki Shida ◽  
Keiji Nogami ◽  
Hiroaki Minami ◽  
Hiroaki Yaoi ◽  
Tomoko Matsumoto ◽  
...  

Abstract Background Factor VIII (FVIII) is an essential factor for coagulation system in the intrinsic pathway. Due to the short survival of FVIII in the plasma circulation, it requires von Willebrand factor (VWF) as a carrier protein to maintain the optimal level for hemostasis. VWF also plays an important role in primary hemostasis by bridging platelets to exposed subendothelial collagens, especially under high shear flow environment. Since VWF carries FVIII, it is conceivable that VWF takes FVIII to the sites of vascular injury. However, the role of FVIII at the local sites under flow conditions is not fully understood despite of the fact that increased level of FVIII is associated with the risk of venous thrombosis and the deficiency of FVIII is the pathology of the bleeding disorder, hemophilia A. The treatment of hemophilia A largely depends on the infusion of FVIII concentrates, which is often complicated by the development of the inhibitor. Recently, bispecific antibody(ACE910)that mimics the role of FVIIIa by recognizing FIXa and FX has been developed and is currently under clinical trial. This antibody theoretically works regardless of the presence of devastating inhibitors against FVIII. Furthermore, it could also improve the clinical outcome of the other bleeding disorders, such as von Willebrand disease (VWD). Aim To analyze the role of FVIII and VWF, and impact of ACE910 at the sites of vascular injury under various shear conditions, we have developed the flow-mediated thrombosis model using flow chamber system. Method Whole blood obtained from healthy donors, hemophilia A and VWD patients were perfused into the collagen coated flow chamber under high (2,500s-1) or low shear (50s-1) flow conditions with/without FVIII concentrate, FVIII/VWF concentrate and ACE910. Formed thrombus was fixed and immunostaining was performed with phalloidin (Platelet), anti-FVIII antibody (FVIII) and anti-thrombin antibody (Thrombin). For the detection of ACE910, anti-human IgG or anti-ACE antibody (rAQ8 or rAJ540) were used. Size of thrombi and distribution of platelet, FVIII, thrombin and ACE910 were analyzed. Result 1) Under high shear flow, thrombus formation of VWD blood was significantly impaired while blood from Hemophilia A demonstrated nearly normal thrombus formation. Addition of FVIII/VWF but not FVIII concentrate to the blood of these patients rescued the impaired thrombus formation. ACE910 enhanced the thrombus formation of blood from both VWD and hemophilia A. Under low shear flow, blood from both hemophilia A and VWD demonstrated decreased thrombus formation. FVIII, FVIII/VWF concentrates and ACE910 improved the size of thrombus. 2) Localization of FVIII was evaluated with thrombin as a marker for the activation of coagulation. Platelets and thrombin demonstrated complete co-localization and intensity of thrombin staining was associated with thrombus size. VWF localized mainly outer layer of thrombus and FVIII localized in and around thrombus. At high shear condition, FVIII and VWF mostly existed with platelets. By contrast, FVIII and VWF demonstrated less co-localization with platelets under low shear condition. ACE910 demonstrated similar tendency to FVIII localization although ACE910 did not appear around thrombus. Conclusion We have developed the flow chamber system to evaluate the extent of thrombogenesis under various shear environment. VWF showed dominant role under high shear conditions while FVIII plays a key role under low shear conditions. FVIII, VWF and ACE910 demonstrated distinct localization. Interestingly, the distribution of FVIII was broader than VWF and platelet. FVIII localized to platelets presumably prior to its activation and contributed for the subsequent thrombin generation at local sites. Finally, ACE910 demonstrated consistent enhancement of thrombus formation of blood from both hemophilia A and VWD and, therefore, is prompted for the treatment of these bleeding disorders. Disclosures Shida: Chugai Pharmaceutical Co., Ltd.: Research Funding. Nogami:Chugai Pharmaceutical Co., Ltd.: Membership on an entity's Board of Directors or advisory committees, Research Funding. Minami:Chugai Pharmaceutical Co., Ltd.: Research Funding. Yaoi:Chugai Pharmaceutical Co., Ltd.: Research Funding. Matsumoto:Chugai Pharmaceutical Co., Ltd.: Research Funding. Kitazawa:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Hattori:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Shima:Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3356-3356
Author(s):  
Bruce A. Schwartz ◽  
Christoph Kannicht ◽  
Birte Fuchs ◽  
Mario Kröning ◽  
Barbera Solecka

Abstract Abstract 3356 Objective: Multimeric glycoprotein von Willebrand factor (VWF) exhibits a unique triplet structure of individual oligomers, resulting from ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs 13) cleavage. The faster and slower migrating triplet bands of a given VWF multimer respectively have one shorter or longer N-terminal peptide sequence. Within this peptide sequence, the A1 domain regulates interaction of VWF with platelet glycoprotein (GP)Ib. Distribution of VWF triplet bands is significantly altered in some types of VWD, however, the impact of triplet structure on VWF function has not been investigated so far. Methods: Platelet-adhesive properties of two VWF preparations with similar multimeric distribution but different triplet composition obtained by size exclusion in addition to heparin affinity chromatography were investigated for differential functional activities. Preparation A was enriched in intermediate triplet bands, while preparation B predominantly contained larger triplet bands. Collagen- and GPIb-binding was determined by surface plasmon resonance (SPR). Platelet adhesion under flow was determined using flow-chamber models. Results: Binding studies revealed that preparation A displayed a reduced affinity for recombinant GPIb, but an unchanged affinity for collagen type III, when compared to preparation B. Under high-shear flow conditions, preparation A was less active in recruiting platelets to collagen type III. Furthermore, when added to blood from patients with von Willebrand disease (VWD), defective thrombus formation was less restored. Conclusion: Thus, VWF forms lacking larger size triplet bands appear to have a decreased potential to recruit platelets to collagen-bound VWF under arterial flow conditions. By implication, changes in triplet band distribution observed in patients with VWD may result in altered platelet adhesion at high-shear flow. Disclosures: Schwartz: Octapharma: Employment. Kannicht:Octapharma: Employment. Fuchs:octapharma: Employment. Kröning:octapharma: Employment. Solecka:Octapharma: Employment.


1996 ◽  
Vol 75 (05) ◽  
pp. 827-832 ◽  
Author(s):  
R Marius Barstad ◽  
Una Ørvim ◽  
Maria J A.G Hamers ◽  
Geir E Tjønnfjord ◽  
Frank R Brosstad ◽  
...  

SummaryAspirin is the most commonly used antithrombotic drug in primary and secondary prophylaxis against cardio- and cerebrovascular disease. In previous studies from our laboratory it was demonstrated that the effect of aspirin on collagen-induced thrombus formation in a parallelplate perfusion device with laminar blood flow is shear rate dependent. Although aspirin did not affect collagen-induced thrombus formation at 650 s-1 (medium sized arteries), a significant inhibition of thrombus formation by approximately 38% at 2,600 s-1 (moderately stenoses in medium sized arteries) was observed. At present we have extended these studies to thrombus formation at the apex of eccentric stenoses in a parallel-plate perfusion chamber device. The stenoses reduced the cross-sectional area of the blood flow channel of the perfusion chambers by 60 or 80%, introducing disturbed laminar flow and apex wall shear rates of 2,600 and 10,500 s-1, respectively. The corresponding wall shear stresses were 80 and 315 dynes/cm2, respectively.Aspirin reduced the platelet thrombus volume at the 60% stenosis by 45% (p <0.03), and the fibrin deposition by 70% (p <0.004). However, none of these parameters were affected by aspirin at the 80% stenosis. These observations may at least partly explain why aspirin has a limited clinical effect in preventing arterial thrombus formation in atherosclerotic vessels at high shear and disturbed blood flow. In contrast, thrombus formation in blood from one patient with Glanzmann’s thrombasthenia and two patients with von Willebrand disease subtype 2M was almost abolished at this blood flow condition. Thus, blocking the function of either von Willebrand factor or glycoprotein IIb/IIIa may represent better antithrombotic approaches for such critical events than blocking the prostaglandin metabolism by aspirin. The lack of effect of aspirin on thrombus formation at the 80% stenosis may reflect shear-induced platelet activation at the stenosis inlet region, since shear-induced platelet aggregation in rotational viscometers is not affected by aspirin at shear stresses exceeding 100 dynes/cm2.


2017 ◽  
Vol 117 (01) ◽  
pp. 75-85 ◽  
Author(s):  
Margareta Holmström ◽  
David E. Schmidt ◽  
Kazuya Hosokawa ◽  
Margareta Blombäck ◽  
Paul Hjemdahl ◽  
...  

SummaryPatients with type 3 von Willebrand disease (VWD-3) have no measurable levels of VW factor (VWF) and usually require treatment with VWF-FVIII concentrate to prevent and/or stop bleeding. Even though the patients are treated prophylactically, they may experience bleeding symptoms. The aim of this study was to evaluate the effect of VWF-FVIII concentrate treatment in VWD-3 patients with the Total Thrombus Analysis System (T-TAS®), which measures thrombus formation under flow conditions. Coagulation profiles of 10 VWD-3 patients were analysed using T-TAS before and 30 minutes after VWF-FVIII concentrate (Haemate®) injection. Results were compared to VWF- and FVIII activity in plasma, and results with thromboelastometry and ris-tocetin-activated platelet impedance aggregometry (Multiplate®) in whole blood. For comparison, 10 healthy controls were also analysed with T-TAS. A median dose of 27 (range 15–35) IU/kg of VWF-FVIII concentrate increased VWF- and FVIII activity as expected. T-TAS thrombus formation was enhanced when a tissue factor/collagen-coated flow chamber was used at low shear, but treatment effects at high shear using a collagen-coated flow chamber were minimal. Whole blood coagulation assessed by thromboelastometry was normal and did not change (p > 0.05) but ristocetin-induced platelet aggregation improved (p < 0.001). In conclusion, T-TAS detects effects of VWF-FVIII concentrate treatment on coagulation-dependent thrombus formation at low shear, but minor effects are observed on platelet-dependent thrombus formation at high shear. The poor prediction of bleeding by conventional laboratory monitoring in VWD-3 patients might be related to insufficient restoration of platelet-dependent thrombus formation.


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 705-711 ◽  
Author(s):  
J Harsfalvi ◽  
JM Stassen ◽  
MF Hoylaerts ◽  
E Van Houtte ◽  
RT Sawyer ◽  
...  

Calin from the saliva of the medicinal leech, Hirudo medicinalis, is a potent inhibitor of collagen mediated platelet adhesion and activation. In addition to inhibition of the direct platelet-collagen interaction, we presently demonstrate that binding of von Willebrand to coated collagen can be prevented by Calin, both under static and flow conditions in agreement with the occurrence of binding of Calin to collagen, confirmed by Biospecific Interaction Analysis. To define whether Calin acted by inhibiting the platelet-collagen or the platelet- von Willebrand factor (vWF)-collagen-mediated thrombus formation, platelet adhesion to different types of collagens was studied in a parallel-plate flow chamber perfused with whole blood at different shear rates. Calin dose-dependently prevented platelet adhesion to the different collagens tested both at high- and low-shear stress. The concentration of Calin needed to cause 50% inhibition of platelet adhesion at high-shear stress was some fivefold lower than that needed for inhibition of vWF-binding under similar conditions, implying that at high-shear stress, the effect of Calin on the direct platelet- collagen interactions, suffices to prevent thrombus formation. Platelet adhesion to extracellular matrix (ECM) of cultured human umbilical vein endothelial cells was only partially prevented by Calin, and even less so at a high-shear rather than a low-shear rate, whereas the platelet binding to coated vWF and fibrinogen were minimally affected at both shear rates. Thus, Calin interferes with both the direct platelet- collagen interaction and the vWF-collagen binding. Both effects may contribute to the inhibition of platelet adhesion in flowing conditions, although the former seems to predominate.


Haemophilia ◽  
2021 ◽  
Author(s):  
Hiroaki Yaoi ◽  
Yasuaki Shida ◽  
Takehisa Kitazawa ◽  
Midori Shima ◽  
Keiji Nogami

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3521-3521
Author(s):  
Yasunori Matsunari ◽  
Masaaki Doi ◽  
Hideto Matsui ◽  
Kenji Nishio ◽  
Hitoshi Furuya ◽  
...  

Abstract Mural thrombus formation at sites of damaged vessel wall, essential for both physiologic hemostasis and pathological thrombosis, is established by platelet adhesion/aggregation and blood coagulation mechanisms. Although tissue factor (TF) is up-regulated upon vessel wall damage and plays a pivotal role in the latter process, its functional relevance under physiologic blood flow conditions is poorly understood. Using an in vitro perfusion chamber system, we have therefore studied the relevant role of TF in thrombus formation mediated by von Willebrand factor (VWF), a distinctive flow-dependent thrombogenic surface, under whole blood flow conditions with varying shear rates. Human recombinant TF (Innobin) were co-coated with purified VWF (100 ug/ml) onto a glass plate to prepare ‘surface-immobilized TF/VWF complex’. Surface density of immobilized TF, evaluated by the ELISA-based assay using an anti-TF monoclonal antibody, was increased in a concentration-dependent and saturated manner by soluble TF (1-100 pM) added on a plate. Citrated whole blood, recalcified with 8 mM CaCl2 prior to perfusion, was perfused over a VWF-surface in the presence or absence of surface-immobilized TF. Platelet adhesion and aggregation was evaluated by the surface coverage of generated thrombi in a defined area after 5-min perfusion. Mural thrombi formed on VWF-surface were also double-stained with fluorescently labeled anti-fibrin and anti-fibrinogen antibodies. Fibrin generation was evaluated by confocal laser scanning microscopy as a ratio of fibrin relative to fibrinogen fluorescence within mural thrombi. As a result, surface-immobilized TF significantly augmented flow-dependent fibrin generation as a function of increasing surface density of TF under both low (250 s-1) and high (1500 s-1) shear rate conditions. In this regard, soluble TF, when added to sample blood, similarly increased intra-thrombus fibrin generation in a dose-dependent manner in the absence of immobilized TF. However, coagula formation in sample blood was enormously amplified by soluble TF during perfusion, as judged by the flow-path occlusion time. In addition to the enhancing effects on fibrin generation, immobilized TF significantly up-regulated VWF-dependent platelet adhesion and aggregation under high shear rate conditions, albeit with no appreciable effects under low shear rate conditions. These results suggest a synergistic functional link between immobilized TF and VWF in mural thrombus formation under high shear rate conditions. Our results clearly illustrate the thrombogenic potentials of two distinct forms (soluble or surface-immobilized) of TF, in which surface-immobilized TF plays a concerted role on VWF-dependent thrombus formation with lesser risk of systemic hypercoagulability which may be induced by circulating soluble TF under high shear rate conditions. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 110 (08) ◽  
pp. 316-322 ◽  
Author(s):  
Masaaki Doi ◽  
Hideto Matsui ◽  
Yasunori Matsunari ◽  
Midori Shima ◽  
Mitsuhiko Sugimoto

SummaryCoagulation factor VIII (FVIII) plays an essential role in haemostasis. To date, physiologic activity of FVIII circulating in the bloodstream (S-FVIII) is evaluated by classic coagulation assays. However, the functional relevance of FVIII (-von Willebrand factor complex) immobilised on thrombogenic surfaces (I-FVIII) remains unclear. We used an in vitro perfusion chamber system to evaluate the function of I-FVIII in the process of mural thrombus formation under whole blood flow conditions. In perfusion of either control or synthetic haemophilic blood, the intra-thrombus fibrin generation on platelet surfaces significantly increased as a function of I-FVIII, independent of S-FVIII, under high shear rate conditions. This I-FVIII effect was unvarying regardless of anti-FVIII inhibitor levels in synthetic haemophilic blood. Thus, our results illustrate coagulation potentials of immobilised clotting factors, distinct from those in the bloodstream, under physiologic flow conditions and may give a clue for novel therapeutic approaches for haemophilic patients with anti-FVIII inhibitors.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4363-4371 ◽  
Author(s):  
Médina Mekrache ◽  
Christilla Bachelot-Loza ◽  
Nadine Ajzenberg ◽  
Abdelhafid Saci ◽  
Paulette Legendre ◽  
...  

Abstract Shear-induced platelet aggregation (SIPA) involves the sequential interaction of von Willebrand factor (VWF) with both glycoprotein Ib (GPIb) and αIIbβ3 receptors. Type 2B recombinant VWF (2B-rVWF), characterized by an increased affinity for GPIb, induces strong SIPA at a high shear rate (4000 s–1). Despite the increased affinity of 2B-rVWF for GPIb, patients with type 2B von Willebrand disease have a paradoxical bleeding disorder, which is not well understood. The purpose of this study was to determine if SIPA induced by 2B-rVWF was associated with αIIbβ3-dependent platelet activation. To this end, we have addressed the influence of 2B-rVWF (Val553Met substitution) on SIPA-dependent variations of tyrosine protein phosphorylation (P-Tyr) and the effect of αIIbβ3 blockers. At a high shear rate, 2B-rVWF induced a strong SIPA, as shown by a 92.7% ± 0.4% disappearance of single platelets (DSP) after 4.5 minutes. In these conditions, increased P-Tyr of proteins migrating at positions 64 kd, 72 kd, and 125 kd were observed. The band at 125 kd was identified as pp125FAK using anti–phospho-FAK antibody. This effect, which required a high level of SIPA (&gt; 70% DSP), was observed at 4000 s–1 but not at 200 s–1. Monoclonal antibodies (MoAbs) 6D1 (anti-GPIb) and 328 (anti-VWF A1 domain), completely abolished SIPA and p125FAK phosphorylation mediated by 2B-rVWF. In contrast, neither RGDS peptide nor MoAb 7E3, both known to block αIIbβ3 engagement, had any effect on SIPA and pp125FAK. The size of aggregates formed at a high shear rate in the presence of 2B-rVWF was decreased by genistein, demonstrating the biologic relevance of pp125FAK. These findings provide a unique mechanism whereby the enhanced interaction of 2B-rVWF with GPIb, without engagement of αIIbβ3, is sufficient to induce SIPA but does not lead to stable thrombus formation.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S.S Saeedi Saravi ◽  
N.R Bonetti ◽  
G.G Camici ◽  
T.F Luscher ◽  
J.H Beer

Abstract Background Aging is associated with alterations in the fecal microbiome composition. The microbiota-derived trimethylamine-N-oxide (TMAO) correlates with arterial thrombotic events, e.g. myocardial infarction and stroke, the leading causes of mortality worldwide. The omega-3 fatty acid (n-3 FA) α-linolenic acid (ALA) has been shown to be protective against thrombosis and associated pathologies. Therefore, we hypothesized that long-term dietary ALA supplementation protects against the aging-associated microbiome dysbiosis, and reduces inflammatory and thrombotic responses. Methods 24 week-old male C57BL/6 mice were fed either a high ALA (7.3g%) or low ALA (0.03g%) diet for 12 months. We examined the compositional changes of fecal microbiota of the animals treated with high vs. low ALA via 16S rRNA gene sequencing. The plasma levels of TMAO and its precursors choline and betaine, and LPS were measured by ELISA. Additionally, the platelet aggregation in response to thrombin, and thrombus formation on collagen under high-shear flow conditions of 3000/sec (to mimic blood flow in stenosed arteries) were investigated. Results Genomic analyses showed that the abundance of Phylum Proteobacteria and the family of desulfovibrio were reduced 71.72% and 51.73% in the aged high ALA-treated mice (p&lt;0.01 and p&lt;0.001, resp.) that may result in decrease in TAMO production and the subsequent inflammatory responses. However, microbial diversity of Bacteroidetes or Fermicutes and Bacteroidetes/Fermicutes ratio did not demonstrate a significant change between high vs. low ALA groups. Interestingly, the dietary intake of high ALA increased the abundance of Lachnospiraceae (p&lt;0.01) that may exert anti-inflammatory effects. Importantly, high ALA significantly decreased the plasma levels of TMAO (p&lt;0.01) and its precursor choline (P&lt;0.05), but not betaine. The pro-inflammatory cytokine TNF-α showed a significant reduction (p&lt;0.05), whereas plasma IL-1β did not change significantly following high ALA supplementation. An increased thrombus formation on collagen under high-shear flow (36.34%, p&lt;0.01) and thrombin-induced platelet aggregation (31.31%, p&lt;0.05) were found in the aged mice. Conclusion These studies demonstrate that an ALA-rich diet induces beneficial bacterial shifts in the aging-associated fecal microbiome that may lead to the suppression of inflammatory and thrombotic responses. Hence, long-term dietary ALA supplementation may be exploited as a nutritional antithrombotic strategy in the aging. Microbiome-Thrombosis-Aging Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): Swiss National Science Foundation (SNSF)


Sign in / Sign up

Export Citation Format

Share Document