Evolutionary constraints on the acquisition of antimicrobial peptide resistance in bacterial pathogens

Author(s):  
Pramod K. Jangir ◽  
Lois Ogunlana ◽  
R. Craig MacLean
Author(s):  
Adyasa Barik ◽  
Pandiyan Rajesh ◽  
Manthiram Malathi ◽  
Vellaisamy Balasubramanian

: In recent years, over use of antibiotics has been raising its head to a serious problem all around the world as pathogens become drug resistant and create challenges to the medical field. This failure of most potent antibiotics that kill pathogens increases the thirst for research to look further way of killing pathogens. It has been led to the findings of antimicrobial peptide which is the most potent peptide to destroy pathogens. This review gives special emphasis to the usage of marine bacteria and other microorganisms for antimicrobial peptide (AMP) which are eco friendly as well as a developing class of natural and synthetic peptides with a wide spectrum of targets to pathogenic microbes. Consequently, a significant attention has been paid mainly to (i) the structure and types of anti microbial peptides and (ii) mode of action and mechanism of antimicrobial peptide resistance to pathogens. In addition to this, the designing of AMPs has been analysed thoroughly for reducing toxicity and developing better potent AMP. It has been done by the modified unnatural amino acids by amidation to target the control of biofilm and persister cell.


2012 ◽  
Vol 85 (5) ◽  
pp. 962-974 ◽  
Author(s):  
Mohamad A. Hamad ◽  
Flaviana Di Lorenzo ◽  
Antonio Molinaro ◽  
Miguel A. Valvano

2013 ◽  
Vol 350 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Margot Schlusselhuber ◽  
Kristen Guldbech ◽  
Corinne Sevin ◽  
Matthias Leippe ◽  
Sandrine Petry ◽  
...  

2018 ◽  
Vol 9 (47) ◽  
pp. 8781-8795 ◽  
Author(s):  
Kaisong Yuan ◽  
Qingsong Mei ◽  
Xinjie Guo ◽  
Youwei Xu ◽  
Danting Yang ◽  
...  

A SERS based biosensor has been developed for isolation, detection and killing of multiple bacterial pathogens.


Microbiology ◽  
2009 ◽  
Vol 155 (7) ◽  
pp. 2168-2181 ◽  
Author(s):  
Sonia Arafah ◽  
Marie-Laure Rosso ◽  
Linda Rehaume ◽  
Robert E. W. Hancock ◽  
Michel Simonet ◽  
...  

During the course of its infection of the mammalian digestive tract, the entero-invasive, Gram-negative bacterium Yersinia pseudotuberculosis must overcome various hostile living conditions (notably, iron starvation and the presence of antimicrobial compounds produced in situ). We have previously reported that in vitro bacterial growth during iron deprivation raises resistance to the antimicrobial peptide polymyxin B; here, we show that this phenotype is mediated by a chromosomal gene (YPTB0333) encoding a transcriptional regulator from the LysR family. We determined that the product of YPTB0333 is a pleiotropic regulator which controls (in addition to its own expression) genes encoding the Yfe iron-uptake system and polymyxin B resistance. Lastly, by using a mouse model of oral infection, we demonstrated that YPTB0333 is required for colonization of Peyer's patches and mesenteric lymph nodes by Y. pseudotuberculosis.


2008 ◽  
Vol 7 (8) ◽  
pp. 1318-1327 ◽  
Author(s):  
Kimberly D. Gank ◽  
Michael R. Yeaman ◽  
Satoshi Kojima ◽  
Nannette Y. Yount ◽  
Hyunsook Park ◽  
...  

ABSTRACT Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082R SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.


Sign in / Sign up

Export Citation Format

Share Document