Mediation of the in vitro cytotoxicity of green and black tea polyphenols by cobalt chloride

2005 ◽  
Vol 155 (1) ◽  
pp. 195-205 ◽  
Author(s):  
H. Babich ◽  
T. Gold ◽  
R. Gold
2013 ◽  
Author(s):  
Husna Zulkipli ◽  
Norita Salim ◽  
Gabriele Anisah Froemming ◽  
Aletza Mohd Ismail ◽  
Hapizah Nawawi

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 390
Author(s):  
Mario Lorenz ◽  
Stephanie Lehmann ◽  
Ilija Djordjevic ◽  
Thomas Düsterhöft ◽  
Benno F. Zimmermann ◽  
...  

Improvement of endothelial function represents a major health effect of tea in humans. Ex vivo, tea and tea polyphenols stimulate nitric oxide (NO)-dependent vasodilation in isolated blood vessels. However, it was reported that polyphenols can generate reactive oxygen species (ROS) in vitro. We therefore aimed to elucidate the role of ROS production in tea polyphenol-induced vasodilation in explanted aortic rings. Vasorelaxation of rat aortic rings was assessed in an organ chamber model with low concentrations of epigallocatechin-3-gallate (EGCG), theaflavin-3,3’-digallate (TF3), and with green and black tea, with or without pretreatment with catalase or superoxide dismutase (SOD). The stability of EGCG and TF3 was measured by HPLC, and the levels of hydrogen peroxide (H2O2) were determined. EGCG and green tea-induced vasorelaxation was completely prevented by catalase and slightly increased by SOD. TF3 and black tea yielded similar results. Both EGCG and TF3 were rapidly degraded. This was associated with increasing H2O2 levels over time. Hydrogen peroxide concentrations produced in a time range compatible with tea polyphenol decay induced NO-dependent vasodilation in aortic rings. In conclusion, tea polyphenol-induced vasodilation in vitro is mediated by low levels of H2O2 generated during compound decay. The results could explain the apparent lack of vasodilatory effects of isolated tea polyphenols in humans.


Nutrition ◽  
2011 ◽  
Vol 27 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Satoshi Uchiyama ◽  
Yoshimasa Taniguchi ◽  
Akiko Saka ◽  
Aruto Yoshida ◽  
Hiroaki Yajima

Sign in / Sign up

Export Citation Format

Share Document