scholarly journals Induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic apoptotic pathways in primary effusion lymphoma

2021 ◽  
Vol 14 (3) ◽  
pp. 101006
Author(s):  
Md Masud Alam ◽  
Ryusho Kariya ◽  
Piyanard Boonnate ◽  
Azusa Kawaguchi ◽  
Seiji Okada
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Zhongjia Jiang ◽  
Fuyang Song ◽  
Yanan Li ◽  
Di Xue ◽  
Ning Zhao ◽  
...  

In an attempt to better understand the pathogen-host interaction between invadingMycoplasma ovipneumoniae(M. ovipneumoniae) and sheep airway epithelial cells, biological effects and possible molecular mechanism of capsular polysaccharide ofM. ovipneumoniae(CPS) in the induction of cell apoptosis were explored using sheep bronchial epithelial cells cultured in air-liquid interface (ALI). The CPS ofM. ovipneumoniaewas first isolated and purified. Results showed that CPS had a cytotoxic effect by disrupting the integrity of mitochondrial membrane, accompanied with an increase of reactive oxygen species and decrease of mitochondrial membrane potential (ΔΨm). Of importance, the CPS exhibited an ability to induce caspase-dependent cell apoptosis via both intrinsic and extrinsic apoptotic pathways. Mechanistically, the CPS induced extrinsic cell apoptosis by upregulating FAS/FASL signaling proteins and cleaved-caspase-8 and promoted a ROS-dependent intrinsic cell apoptosis by activating a JNK and p38 signaling but not ERK1/2 signaling of mitogen-activated protein kinases (MAPK) pathways. These findings provide the first evidence that CPS ofM. ovipneumoniaeinduces a caspase-dependent apoptosis via both intrinsic and extrinsic apoptotic pathways in sheep bronchial epithelial cells, which may be mainly attributed by a ROS-dependent JNK and p38 MAPK signaling pathways.


1997 ◽  
Vol 17 (5) ◽  
pp. 2835-2843 ◽  
Author(s):  
A J Harvey ◽  
A P Bidwai ◽  
L K Miller

A family of baculovirus inhibitor-of-apoptosis (IAP) genes is present in mammals, insects, and baculoviruses, but the mechanism by which they block apoptosis is unknown. We have identified a protein encoded by the Drosophila mod(mdg4) gene which bound to the baculovirus IAPs. This protein induced rapid apoptosis in insect cells, and consequently we have named it Doom. Baculovirus IAPs and P35, an inhibitor of aspartate-specific cysteine proteases, blocked Doom-induced apoptosis. The carboxyl terminus encoded by the 3' exon of the doom cDNA, which distinguishes it from other mod(mdg4) cDNAs, was responsible for induction of apoptosis and engagement of the IAPs. Doom localized to the nucleus, while the IAPs localized to the cytoplasm, but when expressed together, Doom and the IAPs both localized in the nucleus. Thus, IAPs might block apoptosis by interacting with and modifying the behavior of Doom-like proteins that reside in cellular apoptotic pathways.


2013 ◽  
Vol 19 (10) ◽  
pp. 2699-2709 ◽  
Author(s):  
Haiyan Wang ◽  
Shanbao Cai ◽  
Aaron Ernstberger ◽  
Barbara J. Bailey ◽  
Michael Z. Wang ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2390-2390
Author(s):  
Yanjuan He ◽  
Joan Cain ◽  
Lee Ratner ◽  
Leon Bernal-Mizrachi

Abstract Pathways resulting in resistance to apoptosis are essential to the process of lymphomagenesis. One such pathway, the nuclear factor-kB (NFkB), has been shown to be a key element in coordinating the anti-apoptotic effect of these malignancies. However the mechanisms used by which NFkB prevents apoptosis are not well understood. It has been suggested that NFkB inhibits activation of the intrinsic, extrinsic and common apoptotic pathways. Previous work in our lab using two different virally mediated lymphoma models (Tax/HTLV1 and LMP1/EBV driven tumors) has identified two candidates that could explain these results: X chromosome-linked inhibitor of apoptosis (xIAP) and BCL-xL. Although the current literature extensively demonstrates the role of BCL-xL in lymphomas, little is known about the importance of xIAP in these malignancies. To answer this question we tested the apoptotic effect of etoposide or tumor necrosis factor (TNF) after knocking down bcl-xL and xIAP expression in our lymphoma models (SC and Daudi cell lines) using a lentivirus expressing siRNAs. After 24 hours of treatment with etoposide and TNF, we measured apoptosis by flow cytometry using double staining with Annexin V-Alexa Fluorescense and propidium iodide. Interestingly, xIAP siRNA-expressing cell lines demonstrated 2–4 fold increase in the induction of apoptosis after treatment with etoposide as compared to a nearly 2 fold increase in those expressing Bcl-xL siRNA (see Table below). No synergism was seen after treatment with TNF. Based on this finding, we then tested a novel small molecule, homolog smac, (SHC, kindly provided by Dr. PG Harren) to determine the possible therapeutic effect of xIAP inhibitors. After titration, the two most effective doses were selected (25 μM and 50 μM) to treat Daudi cell lines for 24hrs, with either etoposide or TNF. At doses of 25 μM , we observed a 2 fold increase in the induction of apoptosis produced by etoposide compared to that seen in control (DMSO + etoposide) or SHC alone and no synergism with TNF confirming the siRNA data. More importantly, at doses of 50 μM, SHC alone demonstrated activity with a 5 fold increase in apoptosis and a nearly 10 fold increase as compared to control (DMSO) when etoposide was added. Overall, we have demonstrated that xIAP and bcl-xL are important in mediating NFkB-resistance to apoptosis. However, our findings suggested that xIAP is a more potent anti-apoptotic signal and opens the door for further drug development aimed at testing xIAP-inhibitors in lymphomas. Induction of Apoptosis in xIAP or Bcl-xL siRNA expressing cell lines siRNA/Compound Etoposide TNF Untreated xIAP 43.1 ± 17.6 17.04 ± 1.4 14.3 ± 2 SC Bcl-xL 18.39± 3.7 9.4 ± 0.22 12.5 ± 2.7 Luc/DMSO 14.9 ± 1.8 14.4 ± 5.6 14.03 ± 1.25 xIAP 9.2 ± 3.2 4.7 ± 0.48 4.6 ± 0.44 Bcl-xL 8.9 ± 0.5 5.3 ± 1.7 4.16 ± 0.4 Daudi Luc/DMSO 5.49 ± 1.71 4.28 ± 0.5 6.2 ± 0.9 SHC 25 μM 20.07 ± 4.8 12.8 ± 3.9 12.1 ± 3.2 SHC 50 μM 47.7 ± 14.55 38.3 ± 0.99 32.7 ± 8.99


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3900-3900
Author(s):  
Xiaoxuan Cui ◽  
Lu Zhang ◽  
Amanda R Magli ◽  
Rosa Catera ◽  
Jonathan E Kolitz ◽  
...  

Abstract Abstract 3900 Many monoclonal antibodies (mAbs) produced by B-cell chronic lymphocytic leukemia (CLL) cells bind a subset of apoptotic cells that expose intracellular myosin on the cell surface. CLL patients with mAbs that bind these myosin-exposed apoptotic cells (MEACs) have shorter overall survival. Thus, understanding the mechanism of formation of MEACs and how CLL cells interact with MEACs may help elucidate the pathogenesis of CLL. To test if formation of MEACs is part of general apoptotic mechanisms, apoptosis was induced in Jurkat T cells by either the intrinsic or extrinsic pathways. The intrinsic pathway was either achieved spontaneously by culturing at high cell density or induced by camptothecin (CPT) treatment. The extrinsic pathway was induced by Fas ligand (FasL) or anti-Fas mAb treatment. Apoptosis and myosin exposition were analyzed by flow cytometry. All four methods of apoptosis induction produced MEACs after prolonged incubation as detailed below. CPT, FasL or anti-Fas mAb incubation for 4 hrs induced significant apoptosis (43-58%) with a detectable fraction of MEACs (9-12%). After incubation for 16 hrs or longer, the majority of apoptotic cells were MEACs (61-89%). Similarly, spontaneous apoptosis produced more MEACs after longer incubation (20% on day 1 versus 59–69% on days 2–4). Both early apoptotic cells, which flip phosphatidylserine (PS) from the inner to outer membrane surface yet retain membrane integrity (AnnexinV+, 7-actinomycin D (7AAD)-), and late apoptotic cells, which become membrane permeable (AnnexinV+, 7AAD+), demonstrate a subpopulation of MEACs that increases with longer incubation times. In contrast, MEACs are not detectable in non-apoptotic cells (AnnexinV-, 7AAD-). Thus, both intrinsic and extrinsic apoptotic pathways lead to MEAC formation, suggesting that a common downstream mediator may be involved. Caspase-3 activation mediates apoptotic PS exposure and membrane permeability. Therefore, we tested a caspase-3 inhibitor, Z-DEVD-FMK, and found that it significantly reduced both apoptosis and MEAC formation. For example, Z-DEVD-FMK reduced FasL induced apoptosis and MEAC formation from 74 to 14% and from 57 to 10%, respectively. In contrast, caspase-1 inhibitor, Z-YVAD-FMK, had no effect. To test if intracellular myosin is transferred from the cytoplasm to the cell membrane surface during apoptosis, cytoplasmic and membrane protein extracts were prepared, isolated by ultracentrifugation, and blotted with anti-myosin antibody. Two protein bands of the size expected for caspase-3 cleaved myosin (149 and 94 kDa) appeared in membrane extracts of apoptotic cells, but not of live cells. A protein band of the size expected for full-length myosin (250 kDa) predominated in cytoplasmic extracts of live cells. Furthermore, Z-DEVD-FMK inhibited the formation of the 149 and 94 kDa myosin bands in membrane extracts as well as the formation of caspase-3 dependant PARP cleavage products; the same treatment did not alter CD3 membrane protein or GAPDH cytoplasmic protein levels. Taken together, these results suggest that both intrinsic and extrinsic apoptotic pathways produce MEACs at a later stage in apoptosis that involves the common downstream caspase-3 activation. In turn, myosin fragmentation occurs with subsequent exposure to the cell membrane, where the myosin fragments can serve as a potential neoantigen that may be recognized by some CLL mAbs. Because the mAbs we have used in these analyses were originally integral components of CLL surface membranes, we hypothesized that CLL cells could bind MEACs. Indeed, CLL cells binding to MEACs were visualized by confocal microscopy. To determine the functional consequences of such binding, analyses of the effects of MEAC binding on CLL cell survival in vitro are underway. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 17 (11) ◽  
pp. 1950 ◽  
Author(s):  
Yunlong Ma ◽  
Bin Zhu ◽  
Lei Yong ◽  
Chunyu Song ◽  
Xiao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document