scholarly journals Fast charging infrastructure for electric vehicles: Today’s situation and future needs

2018 ◽  
Vol 62 ◽  
pp. 314-329 ◽  
Author(s):  
Till Gnann ◽  
Simon Funke ◽  
Niklas Jakobsson ◽  
Patrick Plötz ◽  
Frances Sprei ◽  
...  
2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.


Energies ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 1207-1229 ◽  
Author(s):  
Antonio Colmenar-Santos ◽  
Carlos de Palacio ◽  
David Borge-Diez ◽  
Oscar Monzón-Alejandro

2019 ◽  
Vol 23 (2) ◽  
pp. 9-21
Author(s):  
Aivars Rubenis ◽  
Aigars Laizans ◽  
Andra Zvirbule

Abstract This article presents preliminary analysis of the Latvian national EV fast - charging network after the first year of operation. The first phase of Latvian national EV fast-charging network was launched in 2018 with 70 charging stations on the TEN-T roads and in the largest towns and cities. The article looks at the initial results, both looking at the total capacity utilization for individual charging stations, determining the hourly charging distribution; and to the utilization of the network as a whole. The results present that there is a very large dispersion of the data, most of the charging events happening in a few charging stations in and around the capital of Latvia. However, there have been charging events in all charging stations, even in the most remote ones. Even more skewed distribution was observed analyzing the charging habits of the EV users, with 10 % of users accounting for more than half of the charging events. This should be taken into account when considering applying the results for the future, expecting larger number of electric vehicles in Latvia.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3721 ◽  
Author(s):  
Deepak Ronanki ◽  
Apoorva Kelkar ◽  
Sheldon S. Williamson

With the growing fleet of a new generation electric vehicles (EVs), it is essential to develop an adequate high power charging infrastructure that can mimic conventional gasoline fuel stations. Therefore, much research attention must be focused on the development of off-board DC fast chargers which can quickly replenish the charge in an EV battery. However, use of the service transformer in the existing fast charging architecture adds to the system cost, size and complicates the installation process while directly connected to medium-voltage (MV) line. With continual improvements in power electronics and magnetics, solid state transformer (SST) technology can be adopted to enhance power density and efficiency of the system. This paper aims to review the current state of the art architectures and challenges of fast charging infrastructure using SST technology while directly connected to the MV line. Finally, this paper discusses technical considerations, challenges and introduces future research possibilities.


2021 ◽  
Author(s):  
Tran Van Hung

Electric vehicles have become a trend as a replacement to gasoline-powered vehicles and will be a sustainable substitution to conventional vehicles. As the number of electric vehicles in cities increases, the charging demand has surged. The optimal location of the charging station plays an important role in the electric vehicle transit system. This chapter discusses the planning of electric vehicle charging infrastructure for urban. The purpose of this work develops an electric vehicle fast-charging facility planning model by considering battery degradation and vehicle heterogeneity in driving range, and considering various influencing factors such as traffic conditions, user charging costs, daily travel, charging behavior, and distribution network constraints. This work identifies optimal fast-charging stations to minimize the total cost of the transit system for deploying fast-charging networks. Besides, this chapter also analyzes some optimization modeling approach for the fast charging location planning, and point out future research directions.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7566
Author(s):  
Naireeta Deb ◽  
Rajendra Singh ◽  
Richard R. Brooks ◽  
Kevin Bai

The expansion of electric vehicles made the expansion of charging infrastructure rudimentary to keep up with this developing technology that helps people in a myriad of ways. The main drawback in electric vehicle charging, however, is the time consumed to charge a vehicle. The fast charging of electric vehicles solves this problem thus making it a lucrative technology for consumers. However, the fast charging technology is not without its limitations. In this paper we have identified the technology gaps in EV fast charging stations mostly focused on the extremely fast charging topology. It will help pave a path for researchers to direct their effort in a consolidated manner to contribute to the fast charging infrastructure. A thorough review of all aspects and limitations of existing extremely fast charging (XFC) stations have been identified and supporting data are provided. The importance of DC power network based on free fuel energy sources and silicon carbide-based power electronics are proposed to provide ultra-low cost and ultra-high speed XFC stations.


2019 ◽  
Vol 100 ◽  
pp. 00018
Author(s):  
Maciej Gis ◽  
Mateusz Bednarski ◽  
Piotr Orliński

Electromobility is a European vision of future motorization. In Poland, there are plans to introduce a million vehicles of this type by 2030. Currently, their share is marginal (about 1 percent). This vision is to be made real. This is due to the fact that vehicle manufacturers are developing newer EV vehicle constructions. Increasing the number of electric vehicles requires the development of their charging infrastructure. Based on the work of the authors regarding the EV vehicle charging network on the Trans-European Transport Network road network, it was possible to extend this issue with energy calculations related to energy demand for supplying the EV vehicle charging network. This is an important topic from the point of view of the State’s energy needs. The calculations made in the article present the problem of the need to increase the production of electricity, which in the case of Poland is associated with increased emissions of harmful substances and the possibility of periodic interruptions in the supply of electricity. Due to excessive domestic consumption with too little production. The second issue is the need to supply electricity to the charging station (infrastructure), as well as transmission losses, which limit the possibility of building multi-station fast charging stations. The issue presented by the authors in this article is one of the key problems relating to the introduction of electromobility in Poland. The key is to determine how large the demand for electricity in the country will be if a greater number of electric vehicles is put into operation. Considering that there are power shortages during a hot summer, this may affect the possibility of using electric vehicles in the country.


Smart Science ◽  
2018 ◽  
pp. 1-15 ◽  
Author(s):  
Wajahat Khan ◽  
Aqueel Ahmad ◽  
Furkan Ahmad ◽  
Mohammad Saad Alam

Energy Policy ◽  
2012 ◽  
Vol 43 ◽  
pp. 136-144 ◽  
Author(s):  
Andreas Schroeder ◽  
Thure Traber

Sign in / Sign up

Export Citation Format

Share Document