Dissecting impacts of phenological shifts for performance across biological scales

Author(s):  
Meredith A. Zettlemoyer ◽  
Megan L. DeMarche
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ameli Kirse ◽  
Sarah J. Bourlat ◽  
Kathrin Langen ◽  
Vera G. Fonseca

AbstractForest habitats host enormous diversity, but little is known about the seasonal turnover of arthropod species between the above- and below ground forest layers. In this study, we used metabarcoding approaches to uncover arthropod diversity in different forest types and seasons. Our study shows that metabarcoding soil eDNA and Malaise trap bulk samples can provide valuable insights into the phenology and life cycles of arthropods. We found major differences in arthropod species diversity between soil samples and Malaise traps, with only 11.8% species overlap. Higher diversity levels were found in Malaise traps in summer whereas soil samples showed a diversity peak in winter, highlighting the seasonal habitat preferences and life strategies of arthropods. We conclude that collecting time series of bulk arthropod samples and eDNA in the same locations provides a more complete picture of local arthropod diversity and turnover rates and may provide valuable information on climate induced phenological shifts for long-term monitoring.


2021 ◽  
Vol 283 ◽  
pp. 110092
Author(s):  
Soon Hwa Kwon ◽  
Seok Kyu Yun ◽  
Sang Suk Kim ◽  
YoSup Park
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Courtney G. Collins ◽  
Sarah C. Elmendorf ◽  
Robert D. Hollister ◽  
Greg H. R. Henry ◽  
Karin Clark ◽  
...  

AbstractRapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


2018 ◽  
Vol 116 (3) ◽  
pp. 929-933 ◽  
Author(s):  
Christopher Hassall ◽  
Jac Billington ◽  
Thomas N. Sherratt

Climate-induced changes in spatial and temporal occurrence of species, as well as species traits such as body size, each have the potential to decouple symbiotic relationships. Past work has focused primarily on direct interactions, particularly those between predators and prey and between plants and pollinators, but studies have rarely demonstrated significant fitness costs to the interacting, coevolving organisms. Here, we demonstrate that changing phenological synchrony in the latter part of the 20th century has different fitness outcomes for the actors within a Batesian mimicry complex, where predators learn to differentiate harmful “model” organisms (stinging Hymenoptera) from harmless “mimics” (hoverflies, Diptera: Syrphidae). We define the mimetic relationships between 2,352 pairs of stinging Hymenoptera and their Syrphidae mimics based on a large-scale citizen science project and demonstrate that there is no relationship between the phenological shifts of models and their mimics. Using computer game-based experiments, we confirm that the fitness of models, mimics, and predators differs among phenological scenarios, creating a phenologically antagonistic system. Finally, we show that climate change is increasing the proportion of mimetic interactions in which models occur first and reducing mimic-first and random patterns of occurrence, potentially leading to complex fitness costs and benefits across all three actors. Our results provide strong evidence for an overlooked example of fitness consequences from changing phenological synchrony.


2018 ◽  
Author(s):  
Collin B. Edwards ◽  
Louie Yang

AbstractSeveral studies have documented a global pattern of phenological advancement that is consistent with ongoing climate change. However, the magnitude of these phenological shifts is highly variable across taxa and locations. This variability of phenological responses has been difficult to explain mechanistically. To examine how the evolution of multi-trait cueing strategies could produce variable responses to climate change, we constructed a model in which organisms evolve strategies that integrate multiple environmental cues to inform anticipatory phenological decisions. We simulated the evolution of phenological cueing strategies in multiple environments, using historic climate data from 78 locations in North America and Hawaii to capture features of climatic correlation structures in the real world. Organisms in our model evolved diverse strategies that were spatially autocorrelated across locations on a continental scale, showing that similar strategies tend to evolve in similar climates. Within locations, organisms often evolved a wide range of strategies that showed similar response phenotypes and fitness outcomes under historical conditions. However, these strategies responded differently to novel climatic conditions, with variable fitness consequences. Our model shows how the evolution of phenological cueing strategies can explain observed variation in phenological shifts and unexpected responses to climate change.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandra Kehrberger ◽  
Andrea Holzschuh

Abstract Knowledge on how the timing of flowering is related to plant fitness and species interactions is crucial to understand consequences of phenological shifts as they occur under climate change. Early flowering plants may face advantages of low competition for pollinators and disadvantages of low pollinator abundances and unfavourable weather conditions. However, it is unknown how this trade-off changes over the season and how the timing affects reproductive success. On eight grasslands we recorded intra-seasonal changes in pollinators, co-flowering plants, weather conditions, flower visitation rates, floral longevity and seed set of Pulsatilla vulgaris. Although bee abundances and the number of pollinator-suitable hours were low at the beginning of the season, early flowers of P. vulgaris received higher flower visitation rates and estimated total number of bee visits than later flowers, which was positively related to seed set. Flower visitation rates decreased over time and with increasing number of co-flowering plants, which competed with P. vulgaris for pollinators. Low interspecific competition for pollinators seems to be a major driver for early flowering dates. Thus, non-synchronous temporal shifts of co-flowering plants as they may occur under climate warming can be expected to strongly affect plant-pollinator interactions and the fitness of the involved plants.


Oikos ◽  
2014 ◽  
Vol 124 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Nicole E. Rafferty ◽  
Paul J. CaraDonna ◽  
Judith L. Bronstein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document